

10.1 / TYPES OF MALICIOUS SOFTWARE 345

Mobile Code

Mobile code refers to programs (e.g., script, macro, or other portable instruction)
that can be shipped unchanged to a heterogeneous collection of platforms and
execute with identical semantics [JANS01]. The term also applies to situations
involving a large homogeneous collection of platforms (e.g., Microsoft Windows).

Mobile code is transmitted from a remote system to a local system and then
executed on the local system without the user’s explicit instruction. Mobile code
often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted to the
user’s workstation. In other cases, mobile code takes advantage of vulnerabilities to
perform its own exploits, such as unauthorized data access or root compromise.
Popular vehicles for mobile code include Java applets, ActiveX, JavaScript, and
VBScript.The most common ways of using mobile code for malicious operations on
local system are cross-site scripting, interactive and dynamic Web sites, e-mail
attachments, and downloads from untrusted sites or of untrusted software.

Multiple-Threat Malware

Viruses and other malware may operate in multiple ways. The terminology is far
from uniform; this subsection gives a brief introduction to several related concepts
that could be considered multiple-threat malware.

A multipartite virus infects in multiple ways. Typically, the multipartite virus is
capable of infecting multiple types of files, so that virus eradication must deal with
all of the possible sites of infection.

A blended attack uses multiple methods of infection or transmission, to maxi-
mize the speed of contagion and the severity of the attack. Some writers characterize
a blended attack as a package that includes multiple types of malware.An example of
a blended attack is the Nimda attack, erroneously referred to as simply a worm.
Nimda uses four distribution methods:

• E-mail: A user on a vulnerable host opens an infected e-mail attachment;
Nimda looks for e-mail addresses on the host and then sends copies of itself to
those addresses.

• Windows shares: Nimda scans hosts for unsecured Windows file shares; it can
then use NetBIOS86 as a transport mechanism to infect files on that host in
the hopes that a user will run an infected file, which will activate Nimda on
that host.

• Web servers: Nimda scans Web servers, looking for known vulnerabilities in
Microsoft IIS. If it finds a vulnerable server, it attempts to transfer a copy of
itself to the server and infect it and its files.

• Web clients: If a vulnerable Web client visits a Web server that has been
infected by Nimda, the client’s workstation will become infected.

Thus, Nimda has worm, virus, and mobile code characteristics. Blended attacks
may also spread through other services, such as instant messaging and peer-to-peer
file sharing.

346 CHAPTER 10 / MALICIOUS SOFTWARE

10.2 VIRUSES

The Nature of Viruses

A computer virus is a piece of software that can “infect” other programs by modifying
them; the modification includes injecting the original program with a routine to make
copies of the virus program, which can then go on to infect other programs. Computer
viruses first appeared in the early 1980s, and the term itself is attributed to Fred Cohen
in 1983. Cohen is the author of a groundbreaking book on the subject [COHE94].

Biological viruses are tiny scraps of genetic code—DNA or RNA—that can
take over the machinery of a living cell and trick it into making thousands of flaw-
less replicas of the original virus. Like its biological counterpart, a computer virus
carries in its instructional code the recipe for making perfect copies of itself. The
typical virus becomes embedded in a program on a computer. Then, whenever the
infected computer comes into contact with an uninfected piece of software, a fresh
copy of the virus passes into the new program. Thus, the infection can be spread
from computer to computer by unsuspecting users who either swap disks or send
programs to one another over a network. In a network environment, the ability to
access applications and system services on other computers provides a perfect cul-
ture for the spread of a virus.

A virus can do anything that other programs do. The difference is that a virus
attaches itself to another program and executes secretly when the host program is
run. Once a virus is executing, it can perform any function, such as erasing files and
programs that is allowed by the privileges of the current user.

A computer virus has three parts [AYCO06]:

• Infection mechanism: The means by which a virus spreads, enabling it to repli-
cate. The mechanism is also referred to as the infection vector.

• Trigger: The event or condition that determines when the payload is activated
or delivered.

• Payload: What the virus does, besides spreading. The payload may involve
damage or may involve benign but noticeable activity.

During its lifetime, a typical virus goes through the following four phases:

• Dormant phase: The virus is idle. The virus will eventually be activated by
some event, such as a date, the presence of another program or file, or the
capacity of the disk exceeding some limit. Not all viruses have this stage.

• Propagation phase: The virus places a copy of itself into other programs or into
certain system areas on the disk. The copy may not be identical to the propa-
gating version; viruses often morph to evade detection. Each infected program
will now contain a clone of the virus, which will itself enter a propagation phase.

• Triggering phase: The virus is activated to perform the function for which it
was intended. As with the dormant phase, the triggering phase can be caused
by a variety of system events, including a count of the number of times that
this copy of the virus has made copies of itself.

10.2 / VIRUSES 347

• Execution phase: The function is performed. The function may be harmless,
such as a message on the screen, or damaging, such as the destruction of
programs and data files.

Most viruses carry out their work in a manner that is specific to a particular oper-
ating system and, in some cases, specific to a particular hardware platform. Thus, they
are designed to take advantage of the details and weaknesses of particular systems.

VIRUS STRUCTURE A virus can be prepended or postpended to an executable
program, or it can be embedded in some other fashion. The key to its operation is
that the infected program, when invoked, will first execute the virus code and then
execute the original code of the program.

A very general depiction of virus structure is shown in Figure 10.1 (based on
[COHE94]). In this case, the virus code, V, is prepended to infected programs, and it
is assumed that the entry point to the program, when invoked, is the first line of the
program.

The infected program begins with the virus code and works as follows.The first
line of code is a jump to the main virus program. The second line is a special marker
that is used by the virus to determine whether or not a potential victim program has
already been infected with this virus. When the program is invoked, control is imme-
diately transferred to the main virus program. The virus program may first seek out
uninfected executable files and infect them. Next, the virus may perform some
action, usually detrimental to the system. This action could be performed every time
the program is invoked, or it could be a logic bomb that triggers only under certain
conditions. Finally, the virus transfers control to the original program. If the infection

program V :�

 1234567;

 subroutine infect-executable :�
 {loop:
 file :� get-random-executable-file;
 if (first-line-of-file � 1234567)
 then goto loop
 else prepend V to file; }

 subroutine do-damage :�
 {whatever damage is to be done}

 subroutine trigger-pulled :�
 {return true if some condition holds}

main: main-program :�
 {infect-executable;
 if trigger-pulled then do-damage;
 goto next;}
next:

}

{goto main;

Figure 10.1 A Simple Virus

348 CHAPTER 10 / MALICIOUS SOFTWARE

 program CV :�

{goto main;
 01234567;

 subroutine infect-executable :�
 {loop:
 file :� get-random-executable-file;
 if (first-line-of-file � 01234567) then goto loop;
 (1) compress file;
 (2) prepend CV to file;
 }

main: main-program :�
 {if ask-permission then infect-executable;
 (3) uncompress rest-of-file;
 (4) run uncompressed file;}
 }

Figure 10.2 Logic for a Compression Virus

CV

P1� P1� P2�P1

t1t0

P2P2

CV CV

1

2

3

4

Figure 10.3 A Compression Virus

phase of the program is reasonably rapid, a user is unlikely to notice any difference
between the execution of an infected and an uninfected program.

A virus such as the one just described is easily detected because an infected
version of a program is longer than the corresponding uninfected one. A way to
thwart such a simple means of detecting a virus is to compress the executable file so
that both the infected and uninfected versions are of identical length. Figure 10.2
[COHE94] shows in general terms the logic required. The key lines in this virus are
numbered, and Figure 10.3 [COHE94] illustrates the operation. We assume that
program P1 is infected with the virus CV. When this program is invoked, control
passes to its virus, which performs the following steps:

1. For each uninfected file P2 that is found, the virus first compresses that file to
produce , which is shorter than the original program by the size of the virus.

2. A copy of the virus is prepended to the compressed program.

3. The compressed version of the original infected program, , is uncompressed.

4. The uncompressed original program is executed.

P¿1

P¿2

10.2 / VIRUSES 349

In this example, the virus does nothing other than propagate. As previously
mentioned, the virus may include a logic bomb.

INITIAL INFECTION Once a virus has gained entry to a system by infecting a single
program, it is in a position to potentially infect some or all other executable files on
that system when the infected program executes. Thus, viral infection can be
completely prevented by preventing the virus from gaining entry in the first place.
Unfortunately, prevention is extraordinarily difficult because a virus can be part of
any program outside a system.Thus, unless one is content to take an absolutely bare
piece of iron and write all one’s own system and application programs, one is
vulnerable. Many forms of infection can also be blocked by denying normal users
the right to modify programs on the system.

The lack of access controls on early PCs is a key reason why traditional
machine code based viruses spread rapidly on these systems. In contrast, while it is
easy enough to write a machine code virus for UNIX systems, they were almost
never seen in practice because the existence of access controls on these systems pre-
vented effective propagation of the virus. Traditional machine code based viruses
are now less prevalent, because modern PC OSs do have more effective access con-
trols. However, virus creators have found other avenues, such as macro and e-mail
viruses, as discussed subsequently.

Viruses Classification

There has been a continuous arms race between virus writers and writers of
antivirus software since viruses first appeared. As effective countermeasures are
developed for existing types of viruses, newer types are developed. There is no
simple or universally agreed upon classification scheme for viruses, In this section,
we follow [AYCO06] and classify viruses along two orthogonal axes: the type of
target the virus tries to infect and the method the virus uses to conceal itself from
detection by users and antivirus software.

A virus classification by target includes the following categories:

• Boot sector infector: Infects a master boot record or boot record and spreads
when a system is booted from the disk containing the virus.

• File infector: Infects files that the operating system or shell consider to be
executable.

• Macro virus: Infects files with macro code that is interpreted by an applica-
tion.

A virus classification by concealment strategy includes the following categories:

• Encrypted virus: A typical approach is as follows. A portion of the virus cre-
ates a random encryption key and encrypts the remainder of the virus.The key
is stored with the virus. When an infected program is invoked, the virus uses
the stored random key to decrypt the virus. When the virus replicates, a differ-
ent random key is selected. Because the bulk of the virus is encrypted with a
different key for each instance, there is no constant bit pattern to observe.

350 CHAPTER 10 / MALICIOUS SOFTWARE

• Stealth virus: A form of virus explicitly designed to hide itself from detection
by antivirus software. Thus, the entire virus, not just a payload is hidden.

• Polymorphic virus: A virus that mutates with every infection, making detec-
tion by the “signature” of the virus impossible.

• Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites itself
completely at each iteration, increasing the difficulty of detection.
Metamorphic viruses may change their behavior as well as their appearance.

One example of a stealth virus was discussed earlier: a virus that uses com-
pression so that the infected program is exactly the same length as an uninfected
version. Far more sophisticated techniques are possible. For example, a virus can
place intercept logic in disk I/O routines, so that when there is an attempt to read
suspected portions of the disk using these routines, the virus will present back the
original, uninfected program.Thus, stealth is not a term that applies to a virus as such
but, rather, refers to a technique used by a virus to evade detection.

A polymorphic virus creates copies during replication that are functionally
equivalent but have distinctly different bit patterns. As with a stealth virus, the pur-
pose is to defeat programs that scan for viruses. In this case, the “signature” of the
virus will vary with each copy. To achieve this variation, the virus may randomly
insert superfluous instructions or interchange the order of independent instructions.
A more effective approach is to use encryption. The strategy of the encryption virus
is followed. The portion of the virus that is responsible for generating keys and
performing encryption/decryption is referred to as the mutation engine. The muta-
tion engine itself is altered with each use.

Virus Kits

Another weapon in the virus writers’ armory is the virus-creation toolkit. Such a
toolkit enables a relative novice to quickly create a number of different viruses.
Although viruses created with toolkits tend to be less sophisticated than viruses
designed from scratch, the sheer number of new viruses that can be generated using
a toolkit creates a problem for antivirus schemes.

Macro Viruses

In the mid-1990s, macro viruses became by far the most prevalent type of virus.
Macro viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Many macro viruses infect Microsoft
Word documents or other Microsoft Office documents. Any hardware plat-
form and operating system that supports these applications can be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of a document
rather than a program.

3. Macro viruses are easily spread.A very common method is by electronic mail.

4. Because macro viruses infect user documents rather than system programs, tra-
ditional file system access controls are of limited use in preventing their spread.

10.3 / VIRUS COUNTERMEASURES 351

Macro viruses take advantage of a feature found in Word and other office
applications such as Microsoft Excel, namely the macro. In essence, a macro is an
executable program embedded in a word processing document or other type of file.
Typically, users employ macros to automate repetitive tasks and thereby save
keystrokes. The macro language is usually some form of the Basic programming
language. A user might define a sequence of keystrokes in a macro and set it up so
that the macro is invoked when a function key or special short combination of keys
is input.

Successive releases of MS Office products provide increased protection
against macro viruses. For example, Microsoft offers an optional Macro Virus
Protection tool that detects suspicious Word files and alerts the customer to the
potential risk of opening a file with macros. Various antivirus product vendors have
also developed tools to detect and correct macro viruses. As in other types of
viruses, the arms race continues in the field of macro viruses, but they no longer are
the predominant virus threat.

E-Mail Viruses

A more recent development in malicious software is the e-mail virus. The first
rapidly spreading e-mail viruses, such as Melissa, made use of a Microsoft Word
macro embedded in an attachment. If the recipient opens the e-mail attachment, the
Word macro is activated. Then

1. The e-mail virus sends itself to everyone on the mailing list in the user’s e-mail
package.

2. The virus does local damage on the user’s system.

In 1999, a more powerful version of the e-mail virus appeared. This newer
version can be activated merely by opening an e-mail that contains the virus rather
than opening an attachment. The virus uses the Visual Basic scripting language
supported by the e-mail package.

Thus we see a new generation of malware that arrives via e-mail and uses e-mail
software features to replicate itself across the Internet. The virus propagates itself as
soon as it is activated (either by opening an e-mail attachment or by opening the
e-mail) to all of the e-mail addresses known to the infected host. As a result, whereas
viruses used to take months or years to propagate, they now do so in hours.This makes
it very difficult for antivirus software to respond before much damage is done.
Ultimately, a greater degree of security must be built into Internet utility and applica-
tion software on PCs to counter the growing threat.

10.3 VIRUS COUNTERMEASURES

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get
into the system in the first place, or block the ability of a virus to modify any files
containing executable code or macros. This goal is, in general, impossible to achieve,

352 CHAPTER 10 / MALICIOUS SOFTWARE

although prevention can reduce the number of successful viral attacks.The next best
approach is to be able to do the following:

• Detection: Once the infection has occurred, determine that it has occurred
and locate the virus.

• Identification: Once detection has been achieved, identify the specific virus
that has infected a program.

• Removal: Once the specific virus has been identified, remove all traces of the
virus from the infected program and restore it to its original state. Remove the
virus from all infected systems so that the virus cannot spread further.

If detection succeeds but either identification or removal is not possible, then the
alternative is to discard the infected file and reload a clean backup version.

Advances in virus and antivirus technology go hand in hand. Early viruses
were relatively simple code fragments and could be identified and purged with
relatively simple antivirus software packages. As the virus arms race has evolved,
both viruses and, necessarily, antivirus software have grown more complex and
sophisticated.

[STEP93] identifies four generations of antivirus software:

• First generation: simple scanners

• Second generation: heuristic scanners

• Third generation: activity traps

• Fourth generation: full-featured protection

A first-generation scanner requires a virus signature to identify a virus. The
virus may contain “wildcards” but has essentially the same structure and bit pattern
in all copies. Such signature-specific scanners are limited to the detection of known
viruses. Another type of first-generation scanner maintains a record of the length of
programs and looks for changes in length.

A second-generation scanner does not rely on a specific signature. Rather, the
scanner uses heuristic rules to search for probable virus infection. One class of such
scanners looks for fragments of code that are often associated with viruses. For
example, a scanner may look for the beginning of an encryption loop used in a poly-
morphic virus and discover the encryption key. Once the key is discovered, the
scanner can decrypt the virus to identify it, then remove the infection and return
the program to service.

Another second-generation approach is integrity checking. A checksum can
be appended to each program. If a virus infects the program without changing the
checksum, then an integrity check will catch the change. To counter a virus that is
sophisticated enough to change the checksum when it infects a program, an
encrypted hash function can be used. The encryption key is stored separately from
the program so that the virus cannot generate a new hash code and encrypt that. By
using a hash function rather than a simpler checksum, the virus is prevented from
adjusting the program to produce the same hash code as before.

Third-generation programs are memory-resident programs that identify a
virus by its actions rather than its structure in an infected program. Such programs

10.3 / VIRUS COUNTERMEASURES 353

have the advantage that it is not necessary to develop signatures and heuristics for a
wide array of viruses. Rather, it is necessary only to identify the small set of actions
that indicate an infection is being attempted and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus
techniques used in conjunction. These include scanning and activity trap compo-
nents. In addition, such a package includes access control capability, which limits the
ability of viruses to penetrate a system and then limits the ability of a virus to update
files in order to pass on the infection.

The arms race continues. With fourth-generation packages, a more compre-
hensive defense strategy is employed, broadening the scope of defense to more
general-purpose computer security measures.

Advanced Antivirus Techniques

More sophisticated antivirus approaches and products continue to appear. In this
subsection, we highlight some of the most important.

GENERIC DECRYPTION Generic decryption (GD) technology enables the antivirus
program to easily detect even the most complex polymorphic viruses while
maintaining fast scanning speeds [NACH97]. Recall that when a file containing a
polymorphic virus is executed, the virus must decrypt itself to activate. In order to
detect such a structure, executable files are run through a GD scanner, which
contains the following elements:

• CPU emulator: A software-based virtual computer. Instructions in an exe-
cutable file are interpreted by the emulator rather than executed on the
underlying processor. The emulator includes software versions of all registers
and other processor hardware, so that the underlying processor is unaffected
by programs interpreted on the emulator.

• Virus signature scanner: A module that scans the target code looking for
known virus signatures.

• Emulation control module: Controls the execution of the target code.

At the start of each simulation, the emulator begins interpreting instructions
in the target code, one at a time. Thus, if the code includes a decryption routine that
decrypts and hence exposes the virus, that code is interpreted. In effect, the virus
does the work for the antivirus program by exposing the virus. Periodically, the con-
trol module interrupts interpretation to scan the target code for virus signatures.

During interpretation, the target code can cause no damage to the actual per-
sonal computer environment, because it is being interpreted in a completely con-
trolled environment.

The most difficult design issue with a GD scanner is to determine how long to
run each interpretation. Typically, virus elements are activated soon after a program
begins executing, but this need not be the case. The longer the scanner emulates a
particular program, the more likely it is to catch any hidden viruses. However, the
antivirus program can take up only a limited amount of time and resources before
users complain of degraded system performance.

354 CHAPTER 10 / MALICIOUS SOFTWARE

DIGITAL IMMUNE SYSTEM The digital immune system is a comprehensive approach
to virus protection developed by IBM [KEPH97a, KEPH97b, WHIT99] and
subsequently refined by Symantec [SYMA01].The motivation for this development
has been the rising threat of Internet-based virus propagation. We first say a few
words about this threat and then summarize IBM’s approach.

Traditionally, the virus threat was characterized by the relatively slow spread of
new viruses and new mutations. Antivirus software was typically updated on a
monthly basis, and this was sufficient to control the problem. Also traditionally, the
Internet played a comparatively small role in the spread of viruses. But as [CHES97]
points out, two major trends in Internet technology have had an increasing impact on
the rate of virus propagation in recent years:

• Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook
make it very simple to send anything to anyone and to work with objects that
are received.

• Mobile-program systems: Capabilities such as Java and ActiveX allow
programs to move on their own from one system to another.

In response to the threat posed by these Internet-based capabilities, IBM has
developed a prototype digital immune system. This system expands on the use of
program emulation discussed in the preceding subsection and provides a general-
purpose emulation and virus-detection system. The objective of this system is to
provide rapid response time so that viruses can be stamped out almost as soon as
they are introduced. When a new virus enters an organization, the immune system
automatically captures it, analyzes it, adds detection and shielding for it, removes it,
and passes information about that virus to systems running IBM AntiVirus so that it
can be detected before it is allowed to run elsewhere.

Figure 10.4 illustrates the typical steps in digital immune system operation:

1. A monitoring program on each PC uses a variety of heuristics based on system
behavior, suspicious changes to programs, or family signature to infer that a
virus may be present.The monitoring program forwards a copy of any program
thought to be infected to an administrative machine within the organization.

2. The administrative machine encrypts the sample and sends it to a central virus
analysis machine.

3. This machine creates an environment in which the infected program can be
safely run for analysis.Techniques used for this purpose include emulation, or the
creation of a protected environment within which the suspect program can be
executed and monitored. The virus analysis machine then produces a prescrip-
tion for identifying and removing the virus.

4. The resulting prescription is sent back to the administrative machine.

5. The administrative machine forwards the prescription to the infected client.

6. The prescription is also forwarded to other clients in the organization.

7. Subscribers around the world receive regular antivirus updates that protect
them from the new virus.

10.3 / VIRUS COUNTERMEASURES 355

The success of the digital immune system depends on the ability of the virus
analysis machine to detect new and innovative virus strains. By constantly analyzing
and monitoring the viruses found in the wild, it should be possible to continually
update the digital immune software to keep up with the threat.

BEHAVIOR-BLOCKING SOFTWARE Unlike heuristics or fingerprint-based scanners,
behavior-blocking software integrates with the operating system of a host computer
and monitors program behavior in real-time for malicious actions [CONR02,
NACH02].The behavior blocking software then blocks potentially malicious actions
before they have a chance to affect the system. Monitored behaviors can include

• Attempts to open, view, delete, and/or modify files;

• Attempts to format disk drives and other unrecoverable disk operations;

• Modifications to the logic of executable files or macros;

• Modification of critical system settings, such as start-up settings;

• Scripting of e-mail and instant messaging clients to send executable content; and

• Initiation of network communications.

Figure 10.5 illustrates the operation of a behavior blocker. Behavior-blocking
software runs on server and desktop computers and is instructed through policies
set by the network administrator to let benign actions take place but to intercede
when unauthorized or suspicious actions occur. The module blocks any suspicious
software from executing. A blocker isolates the code in a sandbox, which restricts
the code’s access to various OS resources and applications. The blocker then sends
an alert.

Because a behavior blocker can block suspicious software in real-time, it has an
advantage over such established antivirus detection techniques as fingerprinting or

Derive
prescription

Extract
signature

Virus
analysis
machine

3
2

1

Analyze virus
behavior and

structure

Administrative
machine

Administrative
machine

Individual
user

Virus-
infected
client

machine

Client
machine

Client

Client

Client

Client
machine

Client
machine

Private
network

Other
private

network

5

6

4

7

Figure 10.4 Digital Immune System

356 CHAPTER 10 / MALICIOUS SOFTWARE

Internet

Firewall
Server running

behavior-blocking
software

Administrator

Sandbox

1. Administrator sets
acceptable software behavior
policies and uploads them to
a server. Policies can also be
uploaded to desktops.

3. Behavior-blocking
software at server flags
suspicious code. The
blocker "sandboxes" the
suspicious software to
prevent it from proceeding

2. Malicious software
manages to make it
through the firewall.

4. Server alerts administrator
that suspicious code has been
identified and sandboxed,
awaiting administrator's
decision on whether the code
should be removed or allowed
to run.

!

Figure 10.5 Behavior-Blocking Software Operation

heuristics. While there are literally trillions of different ways to obfuscate and
rearrange the instructions of a virus or worm, many of which will evade detection by a
fingerprint scanner or heuristic, eventually malicious code must make a well-defined
request to the operating system. Given that the behavior blocker can intercept all such
requests, it can identify and block malicious actions regardless of how obfuscated the
program logic appears to be.

Behavior blocking alone has limitations. Because the malicious code must run
on the target machine before all its behaviors can be identified, it can cause harm
before it has been detected and blocked. For example, a new virus might shuffle a
number of seemingly unimportant files around the hard drive before infecting a sin-
gle file and being blocked. Even though the actual infection was blocked, the user
may be unable to locate his or her files, causing a loss to productivity or possibly
worse.

10.4 WORMS

A worm is a program that can replicate itself and send copies from computer to
computer across network connections. Upon arrival, the worm may be activated to
replicate and propagate again. In addition to propagation, the worm usually
performs some unwanted function. An e-mail virus has some of the characteristics
of a worm because it propagates itself from system to system. However, we can still

10.4 / WORMS 357

classify it as a virus because it uses a document modified to contain viral macro
content and requires human action. A worm actively seeks out more machines to
infect and each machine that is infected serves as an automated launching pad for
attacks on other machines.

The concept of a computer worm was introduced in John Brunner’s 1975 SF
novel The Shockwave Rider. The first known worm implementation was done in
Xerox Palo Alto Labs in the early 1980s. It was nonmalicious, searching for idle
systems to use to run a computationally intensive task.

Network worm programs use network connections to spread from system to
system. Once active within a system, a network worm can behave as a computer
virus or bacteria, or it could implant Trojan horse programs or perform any number
of disruptive or destructive actions.

To replicate itself, a network worm uses some sort of network vehicle.
Examples include the following:

• Electronic mail facility: A worm mails a copy of itself to other systems, so that
its code is run when the e-mail or an attachment is received or viewed.

• Remote execution capability: A worm executes a copy of itself on another
system, either using an explicit remote execution facility or by exploiting a
program flaw in a network service to subvert its operations.

• Remote login capability: A worm logs onto a remote system as a user and then
uses commands to copy itself from one system to the other, where it then
executes.

The new copy of the worm program is then run on the remote system where, in
addition to any functions that it performs at that system, it continues to spread in the
same fashion.

A network worm exhibits the same characteristics as a computer virus: a
dormant phase, a propagation phase, a triggering phase, and an execution phase.The
propagation phase generally performs the following functions:

1. Search for other systems to infect by examining host tables or similar reposi-
tories of remote system addresses.

2. Establish a connection with a remote system.

3. Copy itself to the remote system and cause the copy to be run.

The network worm may also attempt to determine whether a system has
previously been infected before copying itself to the system. In a multiprogramming
system, it may also disguise its presence by naming itself as a system process or using
some other name that may not be noticed by a system operator.

As with viruses, network worms are difficult to counter.

The Morris Worm

Until the current generation of worms, the best known was the worm released onto
the Internet by Robert Morris in 1988 [ORMA03].The Morris worm was designed to
spread on UNIX systems and used a number of different techniques for propagation.

358 CHAPTER 10 / MALICIOUS SOFTWARE

When a copy began execution, its first task was to discover other hosts known to this
host that would allow entry from this host.The worm performed this task by examin-
ing a variety of lists and tables, including system tables that declared which other
machines were trusted by this host, users’ mail forwarding files, tables by which users
gave themselves permission for access to remote accounts, and from a program that
reported the status of network connections. For each discovered host, the worm tried
a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the
worm first attempted to crack the local password file and then used the
discovered passwords and corresponding user IDs. The assumption was that
many users would use the same password on different systems. To obtain the
passwords, the worm ran a password-cracking program that tried

a. Each user’s account name and simple permutations of it

b. A list of 432 built-in passwords that Morris thought to be likely
candidates2

c. All the words in the local system dictionary

2. It exploited a bug in the UNIX finger protocol, which reports the whereabouts of
a remote user.

3. It exploited a trapdoor in the debug option of the remote process that receives
and sends mail.

If any of these attacks succeeded, the worm achieved communication with the
operating system command interpreter. It then sent this interpreter a short boot-
strap program, issued a command to execute that program, and then logged off. The
bootstrap program then called back the parent program and downloaded the
remainder of the worm. The new worm was then executed.

Worm Propagation Model

[ZOU05] describes a model for worm propagation based on an analysis of recent
worm attacks. The speed of propagation and the total number of hosts infected
depend on a number of factors, including the mode of propagation, the vulnerability
or vulnerabilities exploited, and the degree of similarity to preceding attacks. For
the latter factor, an attack that is a variation of a recent previous attack may be
countered more effectively than a more novel attack. Figure 10.6 shows the dynam-
ics for one typical set of parameters. Propagation proceeds through three phases. In
the initial phase, the number of hosts increases exponentially. To see that this is so,
consider a simplified case in which a worm is launched from a single host and infects
two nearby hosts. Each of these hosts infects two more hosts, and so on. This results
in exponential growth. After a time, infecting hosts waste some time attacking
already infected hosts, which reduces the rate of infection. During this middle phase,
growth is approximately linear, but the rate of infection is rapid. When most vulner-
able computers have been infected, the attack enters a slow finish phase as the
worm seeks out those remaining hosts that are difficult to identify.

2The complete list is provided at this book’s Web site.

10.4 / WORMS 359

0.5

100

Slow start
phase

Slow finish
phase

Fast spread
phase

200 300

Time t (minutes)

N
um

be
r

of
 in

fe
ct

ed
 h

os
ts

400 500 600

1

1.5

2

2.5

3

3.5

4

5.5

5
105

Figure 10.6 Worm Propagation Model

Clearly, the objective in countering a worm is to catch the worm in its slow
start phase, at a time when few hosts have been infected.

Recent Worm Attacks

The contemporary era of worm threats began with the release of the Code Red
worm in July of 2001. Code Red exploits a security hole in the Microsoft Internet
Information Server (IIS) to penetrate and spread. It also disables the system file
checker in Windows.The worm probes random IP addresses to spread to other hosts.
During a certain period of time, it only spreads. It then initiates a denial-of-service
attack against a government Web site by flooding the site with packets from numer-
ous hosts. The worm then suspends activities and reactivates periodically. In the
second wave of attack, Code Red infected nearly 360,000 servers in 14 hours. In addi-
tion to the havoc it caused at the targeted server, Code Red consumed enormous
amounts of Internet capacity, disrupting service.

Code Red II is a variant that targets Microsoft IISs. In addition, this newer
worm installs a backdoor, allowing a hacker to remotely execute commands on
victim computers.

In early 2003, the SQL Slammer worm appeared.This worm exploited a buffer
overflow vulnerability in Microsoft SQL server. The Slammer was extremely com-
pact and spread rapidly, infecting 90% of vulnerable hosts within 10 minutes. Late
2003 saw the arrival of the Sobig.f worm, which exploited open proxy servers to turn
infected machines into spam engines. At its peak, Sobig.f reportedly accounted for
one in every 17 messages and produced more than one million copies of itself within
the first 24 hours.

360 CHAPTER 10 / MALICIOUS SOFTWARE

Mydoom is a mass-mailing e-mail worm that appeared in 2004. It followed a
growing trend of installing a backdoor in infected computers, thereby enabling
hackers to gain remote access to data such as passwords and credit card numbers.
Mydoom replicated up to 1000 times per minute and reportedly flooded the
Internet with 100 million infected messages in 36 hours.

A recent worm that rapidly became prevalent in a variety of versions is the
Warezov family of worms [KIRK06]. When the worm is launched, it creates several
executable in system directories and sets itself to run every time Windows starts, by
creating a registry entry. Warezov scans several types of files for e-mail addresses
and sends itself as an e-mail attachment. Some variants are capable of downloading
other malware, such as Trojan horses and adware. Many variants disable security-
related products and/or disable their updating capability.

State of Worm Technology

The state of the art in worm technology includes the following:

• Multiplatform: Newer worms are not limited to Windows machines but can
attack a variety of platforms, especially the popular varieties of UNIX.

• Multi-exploit: New worms penetrate systems in a variety of ways, using
exploits against Web servers, browsers, e-mail, file sharing, and other network-
based applications.

• Ultrafast spreading: One technique to accelerate the spread of a worm is to
conduct a prior Internet scan to accumulate Internet addresses of vulnerable
machines.

• Polymorphic: To evade detection, skip past filters, and foil real-time analysis,
worms adopt the virus polymorphic technique. Each copy of the worm has
new code generated on the fly using functionally equivalent instructions and
encryption techniques.

• Metamorphic: In addition to changing their appearance, metamorphic worms
have a repertoire of behavior patterns that are unleashed at different stages of
propagation.

• Transport vehicles: Because worms can rapidly compromise a large number of
systems, they are ideal for spreading other distributed attack tools, such as
distributed denial of service bots.

• Zero-day exploit: To achieve maximum surprise and distribution, a worm
should exploit an unknown vulnerability that is only discovered by the general
network community when the worm is launched.

Mobile Phone Worms

Worms first appeared on mobile phones in 2004. These worms communicate
through Bluetooth wireless connections or via the multimedia messaging service
(MMS). The target is the smartphone, which is a mobile phone that permits users to
install software applications from sources other than the cellular network operator.
Mobile phone malware can completely disable the phone, delete data on the phone,
or force the device to send costly messages to premium-priced numbers.

10.4 / WORMS 361

An example of a mobile phone worm is CommWarrior, which was launched in
2005. This worm replicates by means of Bluetooth to other phones in the receiving
area. It also sends itself as an MMS file to numbers in the phone’s address book and
in automatic replies to incoming text messages and MMS messages. In addition, it
copies itself to the removable memory card and inserts itself into the program
installation files on the phone.

Worm Countermeasures

There is considerable overlap in techniques for dealing with viruses and worms.
Once a worm is resident on a machine, antivirus software can be used to detect it. In
addition, because worm propagation generates considerable network activity, net-
work activity and usage monitoring can form the basis of a worm defense.

To begin, let us consider the requirements for an effective worm countermea-
sure scheme:

• Generality: The approach taken should be able to handle a wide variety of
worm attacks, including polymorphic worms.

• Timeliness: The approach should respond quickly so as to limit the number of
infected systems and the number of generated transmissions from infected
systems.

• Resiliency: The approach should be resistant to evasion techniques employed
by attackers to evade worm countermeasures.

• Minimal denial-of-service costs: The approach should result in minimal reduc-
tion in capacity or service due to the actions of the countermeasure software.
That is, in an attempt to contain worm propagation, the countermeasure
should not significantly disrupt normal operation.

• Transparency: The countermeasure software and devices should not require
modification to existing (legacy) OSs, application software, and hardware.

• Global and local coverage: The approach should be able to deal with attack
sources both from outside and inside the enterprise network.

No existing worm countermeasure scheme appears to satisfy all these require-
ments. Thus, administrators typically need to use multiple approaches in defending
against worm attacks.

COUNTERMEASURE APPROACHES Following [JHI07], we list six classes of worm
defense:

A. Signature-based worm scan filtering: This type of approach generates a worm
signature, which is then used to prevent worm scans from entering/leaving a
network/host. Typically, this approach involves identifying suspicious flows
and generating a worm signature. This approach is vulnerable to the use of
polymorphic worms: Either the detection software misses the worm or, if it is
sufficiently sophisticated to deal with polymorphic worms, the scheme may
take a long time to react. [NEWS05] is an example of this approach.

B. Filter-based worm containment: This approach is similar to class A but focuses
on worm content rather than a scan signature. The filter checks a message to

362 CHAPTER 10 / MALICIOUS SOFTWARE

determine if it contains worm code. An example is Vigilante [COST05], which
relies on collaborative worm detection at end hosts. This approach can be quite
effective but requires efficient detection algorithms and rapid alert dissemination.

C. Payload-classification-based worm containment: These network-based tech-
niques examine packets to see if they contain a worm.Various anomaly detection
techniques can be used, but care is needed to avoid high levels of false positives
or negatives. An example of this approach is reported in [CHIN05], which looks
for exploit code in network flows. This approach does not generate signatures
based on byte patterns but rather looks for control and data flow structures that
suggest an exploit.

D. Threshold random walk (TRW) scan detection: TRW exploits randomness
in picking destinations to connect to as a way of detecting if a scanner is in
operation [JUNG04]. TRW is suitable for deployment in high-speed, low-cost
network devices. It is effective against the common behavior seen in worm
scans.

E. Rate limiting: This class limits the rate of scanlike traffic from an infected host.
Various strategies can be used, including limiting the number of new machines a
host can connect to in a window of time, detecting a high connection failure rate,
and limiting the number of unique IP addresses a host can scan in a window of
time. [CHEN04] is an example. This class of countermeasures may introduce
longer delays for normal traffic. This class is also not suited for slow, stealthy
worms that spread slowly to avoid detection based on activity level.

F. Rate halting: This approach immediately blocks outgoing traffic when a
threshold is exceeded either in outgoing connection rate or diversity of con-
nection attempts [JHI07]. The approach must include measures to quickly
unblock mistakenly blocked hosts in a transparent way. Rate halting can inte-
grate with a signature- or filter-based approach so that once a signature or fil-
ter is generated, every blocked host can be unblocked. Rate halting appears to
offer a very effective countermeasure. As with rate limiting, rate halting tech-
niques are not suitable for slow, stealthy worms.

We look now at two approaches in more detail.

PROACTIVE WORM CONTAINMENT The PWC scheme [JHI07] is host based rather
than being based on network devices such as honeypots, firewalls, and network
IDSs. PWC is designed to address the threat of worms that spread rapidly. The
software on a host looks for surges in the rate of frequency of outgoing connection
attempts and the diversity of connections to remote hosts. When such a surge is
detected, the software immediately blocks its host from further connection
attempts. The developers estimate that only a few dozen infected packets may be
sent out to other systems before PWC quarantines that attack. In contrast, the
Slammer worm on average sent out 4000 infected packets per second.

A deployed PWC system consists of a PWC manager and PWC agents in
hosts. Figure 10.7 is an example of an architecture that includes PWC. In this exam-
ple, the security manager, signature extractor, and PWC manager are implemented
in a single network device. In practice, these three modules could be implemented as
two or three separate devices.

10.4 / WORMS 363

The operation of the PWC architecture can be described as follows:

A. A PWC agent monitors outgoing traffic for scan activity, determined by a
surge in UDP or TCP connection attempts to remote hosts. If a surge is
detected, the agent performs the following actions: (1) issues an alert to local
system; (2) blocks all outgoing connection attempts; (3) transmits the alert to
the PWC manager; and (4) starts a relaxation analysis, described in D.

B. A PWC manager receives an alert. The PWC propagates the alert to all other
agents (beside the originating agent).

C. The host receives an alert. The agent must decide whether to ignore the alert, in
the following way. If the time since the last incoming packet has been sufficiently
long so that the agent would have detected a worm if infected, then the alert is
ignored. Otherwise, the agent assumes that it might be infected and performs the
following actions: (1) blocks all outgoing connection attempts from the specific
alerting port; and (2) starts a relaxation analysis, described in D.

D. Relaxation analysis is performed as follows.An agent monitors outgoing activ-
ity for a fixed window of time to see if outgoing connections exceed a thresh-
old. If so, blockage is continued and relaxation analysis is performed for
another window of time. This process continues until the outgoing connection
rate drops below the threshold, at which time the agent removes the block. If
the threshold continues to be exceeded over a sufficient number of relaxation
windows, the agent isolates the host and reports to the PWC manager.

Internet

external
firewall

Worm management center
—Security manager
—Signature extractor
—PWC manager

hosts

hosts

router

LAN switch

LAN switch

Figure 10.7 Example PWC Deployment

364 CHAPTER 10 / MALICIOUS SOFTWARE

Meanwhile, a separate aspect of the worm defense system is in operation. The
signature extractor functions as a passive sensor that monitors all traffic and
attempts to detect worms by signature analysis. When a new worm is detected, its
signature is sent by the security manager to the firewall to filter out any more copies
of the worm. In addition, the PWC manager sends the signature to PWC agents,
enabling them to immediately recognize infection and disable the worm.

NETWORK-BASED WORM DEFENSE The key element of a network-based worm
defense is worm monitoring software. Consider an enterprise network at a site,
consisting of one or an interconnected set of LANs. Two types of monitoring
software are needed:

• Ingress monitors: These are located at the border between the enterprise net-
work and the Internet.They can be part of the ingress filtering software of a bor-
der router or external firewall or a separate passive monitor. A honeypot can
also capture incoming worm traffic.An example of a detection technique for an
ingress monitor is to look for incoming traffic to unused local IP addresses.

• Egress monitors: These can be located at the egress point of individual LANs
on the enterprise network as well as at the border between the enterprise net-
work and the Internet. In the former case, the egress monitor can be part of
the egress filtering software of a LAN router or switch. As with ingress moni-
tors, the external firewall or a honeypot can house the monitoring software.
Indeed, the two types of monitors can be collocated. The egress monitor is
designed to catch the source of a worm attack by monitoring outgoing traffic
for signs of scanning or other suspicious behavior.

Worm monitors can act in the manner of intrusion detection systems and gen-
erate alerts to a central administrative system. It is also possible to implement a sys-
tem that attempts to react in real time to a worm attack, so as to counter zero-day
exploits effectively. This is similar to the approach taken with the digital immune
system (Figure 10.4).

Figure 10.8 shows an example of a worm countermeasure architecture [SIDI05].
The system works as follows (numbers in figure refer to numbers in the following list):

1. Sensors deployed at various network locations detect a potential worm. The
sensor logic can also be incorporated in IDS sensors.

2. The sensors send alerts to a central server that correlates and analyzes the incom-
ing alerts. The correlation server determines the likelihood that a worm attack is
being observed and the key characteristics of the attack.

3. The server forwards its information to a protected environment, where the
potential worm may be sandboxed for analysis and testing.

4. The protected system tests the suspicious software against an appropriately
instrumented version of the targeted application to identify the vulnerability.

5. The protected system generates one or more software patches and tests these.

6. If the patch is not susceptible to the infection and does not compromise the
application’s functionality, the system sends the patch to the application host
to update the targeted application.

10.5 / DISTRIBUTED DENIAL OF SERVICE ATTACKS 365

Internet

Remote sensor
Honeypot

Passive
sensor

Firewall
sensor

Correlation
server

Application
server

Instrumented applications

Sandboxed
environment

Enterprise network

Hypothesis testing
and analysis

Patch
generation

3. Forward
features

5. Possible fix generation

6. Application update

4. Vulnerability
testing and
identification

1. Worm scans or
infection attempts

2. Notifications

Figure 10.8 Placement of Worm Monitors

The success of such an automated patching system depends on maintaining a
current list of potential attacks and developing general tools for patching software
to counter such attacks. Examples of approaches are as follows:

• Increasing the size of buffers

• Using minor code-randomization techniques [BHAT03] so that the infection
no longer works because the code to be attacked is no longer in the same form
and location

• Adding filters to the application that enable it to recognize and ignore an attack

10.5 DISTRIBUTED DENIAL OF SERVICE ATTACKS

Distributed denial of service (DDoS) attacks present a significant security threat to
corporations, and the threat appears to be growing [VIJA02]. In one study, covering
a three-week period in 2001, investigators observed more than 12,000 attacks
against more than 5000 distinct targets, ranging from well-known ecommerce com-
panies such as Amazon and Hotmail to small foreign ISPs and dial-up connections
[MOOR01]. DDoS attacks make computer systems inaccessible by flooding servers,
networks, or even end user systems with useless traffic so that legitimate users can
no longer gain access to those resources. In a typical DDoS attack, a large number of

compromised hosts are amassed to send useless packets. In recent years, the attack
methods and tools have become more sophisticated, effective, and more difficult to
trace to the real attackers, while defense technologies have been unable to with-
stand large-scale attacks [CHAN02].

A denial of service (DoS) attack is an attempt to prevent legitimate users of a
service from using that service. When this attack comes from a single host or net-
work node, then it is simply referred to as a DoS attack. A more serious threat is
posed by a DDoS attack. In a DDoS attack, an attacker is able to recruit a number
of hosts throughout the Internet to simultaneously or in a coordinated fashion
launch an attack upon the target.This section is concerned with DDoS attacks. First,
we look at the nature and types of attacks. Next, we examine means by which an
attacker is able to recruit a network of hosts for attack launch. Finally, this section
looks at countermeasures.

DDoS Attack Description

A DDoS attack attempts to consume the target’s resources so that it cannot provide
service. One way to classify DDoS attacks is in terms of the type of resource that is
consumed. Broadly speaking, the resource consumed is either an internal host
resource on the target system or data transmission capacity in the local network to
which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack.
Figure 10.9a shows the steps involved:

1. The attacker takes control of multiple hosts over the Internet, instructing
them to contact the target Web server.

2. The slave hosts begin sending TCP/IP SYN (synchronize/initialization) packets,
with erroneous return IP address information, to the target.

3. Each SYN packet is a request to open a TCP connection. For each such
packet, the Web server responds with a SYN/ACK (synchronize/acknowl-
edge) packet, trying to establish a TCP connection with a TCP entity at a spu-
rious IP address. The Web server maintains a data structure for each SYN
request waiting for a response back and becomes bogged down as more traffic
floods in. The result is that legitimate connections are denied while the victim
machine is waiting to complete bogus “half-open” connections.

The TCP state data structure is a popular internal resource target but by no
means the only one. [CERT01] gives the following examples:

1. In many systems, a limited number of data structures are available to hold
process information (process identifiers, process table entries, process slots, etc.).
An intruder may be able to consume these data structures by writing a simple
program or script that does nothing but repeatedly create copies of itself.

2. An intruder may also attempt to consume disk space in other ways, including

• generating excessive numbers of mail messages

• intentionally generating errors that must be logged

• placing files in anonymous ftp areas or network-shared areas

366 CHAPTER 10 / MALICIOUS SOFTWARE

SYN
packets

Attack
machine

Attack
machine

Reflector
machines

Slave
servers

1

1

2

2

3

3

(a) Distributed SYN flood attack

(a) Distributed ICMP attack

Internet

Target Web
server

Target
router

SYN
packets

SYN/ACK
packets

Figure 10.9 Examples of Simple DDoS Attacks

367

368 CHAPTER 10 / MALICIOUS SOFTWARE

Figure 10.9b illustrates an example of an attack that consumes data transmis-
sion resources. The following steps are involved:

1. The attacker takes control of multiple hosts over the Internet, instructing
them to send ICMP ECHO packets3 with the target’s spoofed IP address to a
group of hosts that act as reflectors, as described subsequently.

2. Nodes at the bounce site receive multiple spoofed requests and respond by send-
ing echo reply packets to the target site.

3. The target’s router is flooded with packets from the bounce site, leaving no
data transmission capacity for legitimate traffic.

Another way to classify DDoS attacks is as either direct or reflector DDoS
attacks. In a direct DDoS attack (Figure 10.10a), the attacker is able to implant zom-
bie software on a number of sites distributed throughout the Internet. Often, the
DDoS attack involves two levels of zombie machines: master zombies and slave zom-
bies.The hosts of both machines have been infected with malicious code.The attacker
coordinates and triggers the master zombies, which in turn coordinate and trigger
the slave zombies.The use of two levels of zombies makes it more difficult to trace the
attack back to its source and provides for a more resilient network of attackers.

A reflector DDoS attack adds another layer of machines (Figure 10.10b). In
this type of attack, the slave zombies construct packets requiring a response that
contains the target’s IP address as the source IP address in the packet’s IP header.
These packets are sent to uninfected machines known as reflectors. The uninfected
machines respond with packets directed at the target machine. A reflector DDoS
attack can easily involve more machines and more traffic than a direct DDoS attack
and hence be more damaging. Further, tracing back the attack or filtering out the
attack packets is more difficult because the attack comes from widely dispersed
uninfected machines.

Constructing the Attack Network

The first step in a DDoS attack is for the attacker to infect a number of machines
with zombie software that will ultimately be used to carry out the attack. The essen-
tial ingredients in this phase of the attack are the following:

1. Software that can carry out the DDoS attack.The software must be able to run
on a large number of machines, must be able to conceal its existence, must be
able to communicate with the attacker or have some sort of time-triggered
mechanism, and must be able to launch the intended attack toward the target.

2. A vulnerability in a large number of systems.The attacker must become aware of
a vulnerability that many system administrators and individual users have failed
to patch and that enables the attacker to install the zombie software.

3. A strategy for locating vulnerable machines, a process known as scanning.

3The Internet Control Message Protocol (ICMP) is an IP-level protocol for the exchange of control pack-
ets between a router and a host or between hosts. The ECHO packet requires the recipient to respond
with an echo reply to check that communication is possible between entities.

10.5 / DISTRIBUTED DENIAL OF SERVICE ATTACKS 369

(a) Direct DDoS Attack

Attacker

Attacker

Reflectors

Victim

Victim

Master
zombies

Master
zombies

Slave
zombies

Slave
zombies

(b) Reflector DDoS Attack

Figure 10.10 Types of Flooding-Based DDoS Attacks

In the scanning process, the attacker first seeks out a number of vulnerable
machines and infects them. Then, typically, the zombie software that is installed in
the infected machines repeats the same scanning process, until a large distributed
network of infected machines is created. [MIRK04] lists the following types of scan-
ning strategies:

• Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of

370 CHAPTER 10 / MALICIOUS SOFTWARE

Internet traffic, which may cause generalized disruption even before the actual
attack is launched.

• Hit-List: The attacker first compiles a long list of potential vulnerable
machines. This can be a slow process done over a long period to avoid detec-
tion that an attack is underway. Once the list is compiled, the attacker begins
infecting machines on the list. Each infected machine is provided with a
portion of the list to scan. This strategy results in a very short scanning period,
which may make it difficult to detect that infection is taking place.

• Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

• Local subnet: If a host can be infected behind a firewall, that host then looks
for targets in its own local network. The host uses the subnet address structure
to find other hosts that would otherwise be protected by the firewall.

DDoS Countermeasures

In general, there are three lines of defense against DDoS attacks [CHAN02]:

• Attack prevention and preemption (before the attack): These mechanisms
enable the victim to endure attack attempts without denying service to legiti-
mate clients. Techniques include enforcing policies for resource consumption
and providing backup resources available on demand. In addition, prevention
mechanisms modify systems and protocols on the Internet to reduce the possi-
bility of DDoS attacks.

• Attack detection and filtering (during the attack): These mechanisms attempt to
detect the attack as it begins and respond immediately.This minimizes the impact
of the attack on the target. Detection involves looking for suspicious patterns of
behavior. Response involves filtering out packets likely to be part of the attack.

• Attack source traceback and identification (during and after the attack): This
is an attempt to identify the source of the attack as a first step in preventing
future attacks. However, this method typically does not yield results fast
enough, if at all, to mitigate an ongoing attack.

The challenge in coping with DDoS attacks is the sheer number of ways in
which they can operate. Thus DDoS countermeasures must evolve with the threat.

10.6 RECOMMENDED READING AND WEB SITES

For a thorough understanding of viruses, the book to read is [SZOR05]. Another excellent
treatment is [AYCO06]. Good overview articles on viruses and worms are [CASS01],
[FORR97], [KEPH97a], and [NACH97]. [MEIN01] provides a good treatment of the Code
Red worm. [WEAV03] is a comprehensive survey of worm characteristics. [HYPP06] dis-
cusses worm attacks on mobile phones.

[PATR04] is a worthwhile survey of DDoS attacks. [MIRK04] is a thorough description
of the variety of DDoS attacks and countermeasures. [CHAN02] is a good examination of
DDoS defense strategies.

10.7 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 371

AYCO06 Aycock, J. Computer Viruses and Malware. New York: Springer, 2006.
CASS01 Cass, S. “Anatomy of Malice.” IEEE Spectrum, November 2001.
CHAN02 Chang, R.“Defending Against Flooding-Based Distributed Denial-of-Service

Attacks: A Tutorial.” IEEE Communications Magazine, October 2002.
FORR97 Forrest, S.; Hofmeyr, S.; and Somayaji, A. “Computer Immunology.”

Communications of the ACM, October 1997.
HYPP06 Hypponen, M. “Malware Goes Mobile.” Scientific American, November 2006.
KEPH97a Kephart, J.; Sorkin, G.; Chess, D.; and White, S. “Fighting Computer Viruses.”

Scientific American, November 1997.
MEIN01 Meinel, C. “Code Red for the Web.” Scientific American, October 2001.
MIRK04 Mirkovic, J., and Relher, P. “A Taxonomy of DDoS Attack and DDoS Defense

Mechanisms.” ACM SIGCOMM Computer Communications Review, April 2004.
NACH97 Nachenberg, C. “Computer Virus-Antivirus Coevolution.” Communications

of the ACM, January 1997.
PATR04 Patrikakis, C.; Masikos, M.; and Zouraraki, O. “Distributed Denial of Service

Attacks.” The Internet Protocol Journal, December 2004.
SZOR05 Szor, P., The Art of Computer Virus Research and Defense. Reading, MA:

Addison-Wesley, 2005.
WEAV03 Weaver, N., et al. “A Taxonomy of Computer Worms.” The First ACM

Workshop on Rapid Malcode (WORM), 2003.

Recommended Web Sites:

• AntiVirus Online: IBM’s site on virus information.

• Vmyths: Dedicated to exposing virus hoaxes and dispelling misconceptions about real
viruses.

• VirusList: Site maintained by commercial antivirus software provider. Good collection
of useful information.

• DDoS Attacks/Tools: Extensive list of links and documents.

10.7 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

backdoor
behavior-blocking software
blended attack
boot-sector virus
digital immune system
direct DDoS attack

distributed denial of service
(DDoS)

downloaders
e-mail virus
flooder
logic bomb

macro virus
malicious software
malware
metamorphic virus
mobile code
parasitic virus

Review Questions

10.1 What is the role of compression in the operation of a virus?
10.2 What is the role of encryption in the operation of a virus?
10.3 What are typical phases of operation of a virus or worm?
10.4 What is a digital immune system?
10.5 How does behavior-blocking software work?
10.6 In general terms, how does a worm propagate?
10.7 Describe some worm countermeasures.
10.8 What is a DDoS?

Problems

10.1 There is a flaw in the virus program of Figure 10.1. What is it?
10.2 The question arises as to whether it is possible to develop a program that can analyze

a piece of software to determine if it is a virus. Consider that we have a program D
that is supposed to be able to do that. That is, for any program P, if we run D(P), the
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the
following program:

Program CV :=
{ ...
main-program :=

{if D(CV) then goto next:
else infect-executable;

}
next:
}

In the preceding program, infect-executable is a module that scans memory for exe-
cutable programs and replicates itself in those programs. Determine if D can correctly
decide whether CV is a virus.

10.3 The point of this problem is to demonstrate the type of puzzles that must be solved in
the design of malicious code and therefore, the type of mindset that one wishing to
counter such attacks must adopt.
a. Consider the following C program:

begin
print (*begin print (); end.*);

end

What do you think the program was intended to do? Does it work?
b. Answer the same questions for the following program:

char [] = {'0', ' ', '}', ';', 'm', 'a', 'i', 'n',
'(', ')', '{', and so on... 't', ')', '0'};

main ()
{

int I;
printf(*char t[] = (*);

polymorphic virus
reflector DDoS attack
scanning

stealth virus
trapdoor
Trojan horse

virus
worm
zero-day exploit

372 CHAPTER 10 / MALICIOUS SOFTWARE

10.7 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 373

for (i=0; t[i]!=0; i=i+1)
printf("%d, ", t[i]);

printf("%s", t);
}

c. What is the specific relevance of this problem to this chapter?
10.4 Consider the following fragment:

legitimate code
if data is Friday the 13th;

crash_computer();
legitimate code

What type of malicious software is this?
10.5 Consider the following fragment in an authentication program:

username = read_username();
password = read_password();
if username is "133t h4ck0r"

return ALLOW_LOGIN;
if username and password are valid

return ALLOW_LOGIN
else return DENY_LOGIN

What type of malicious software is this?
10.6 The following code fragments show a sequence of virus instructions and a metamor-

phic version of the virus. Describe the effect produced by the metamorphic code.

Original Code Metamorphic Code

mov eax, 5
add eax, ebx
call [eax]

mov eax, 5
push ecx
pop ecx
add eax, ebx
swap eax, ebx
swap ebx, eax
call [eax]
nop

10.7 The list of passwords used by the Morris worm is provided at this book’s Web site.
a. The assumption has been expressed by many people that this list represents words

commonly used as passwords. Does this seem likely? Justify your answer.
b. If the list does not reflect commonly used passwords, suggest some approaches

that Morris may have used to construct the list.
10.8 Suggest some methods of attacking the PWC worm defense that could be used by

worm creators and suggest countermeasures to these methods.

CHAPTER

FIREWALLS
11.1 The Need for Firewalls

11.2 Firewall Characteristics

11.3 Types of Firewalls

Packet Filtering Firewall
Stateful Inspection Firewalls
Application-Level Gateway
Circuit-Level Gateway

11.4 Firewall Basing

Bastion Host
Host-Based Firewalls
Personal Firewall

11.5 Firewall Location and Configurations

DMZ Networks
Virtual Private Networks
Distributed Firewalls
Summary of Firewall Locations and Topologies

11.6 Recommended Reading and Web Site

11.7 Key Terms, Review Questions, and Problems

374

11.1 / THE NEED FOR FIREWALLS 375

The function of a strong position is to make the forces holding it practically
unassailable.

—On War, Carl Von Clausewitz

On the day that you take up your command, block the frontier passes, destroy the
official tallies, and stop the passage of all emissaries.

—The Art of War, Sun Tzu

KEY POINTS

◆ A firewall forms a barrier through which the traffic going in each direction
must pass. A firewall security policy dictates which traffic is authorized to
pass in each direction.

◆ A firewall may be designed to operate as a filter at the level of IP packets,
or may operate at a higher protocol layer.

Firewalls can be an effective means of protecting a local system or network of systems
from network-based security threats while at the same time affording access to the out-
side world via wide area networks and the Internet.

11.1 THE NEED FOR FIREWALLS

Information systems in corporations, government agencies, and other organizations
have undergone a steady evolution. The following are notable developments:

• Centralized data processing system, with a central mainframe supporting a
number of directly connected terminals

• Local area networks (LANs) interconnecting PCs and terminals to each other
and the mainframe

• Premises network, consisting of a number of LANs, interconnecting PCs,
servers, and perhaps a mainframe or two

• Enterprise-wide network, consisting of multiple, geographically distributed
premises networks interconnected by a private wide area network (WAN)

• Internet connectivity, in which the various premises networks all hook into the
Internet and may or may not also be connected by a private WAN

Internet connectivity is no longer optional for organizations. The information
and services available are essential to the organization. Moreover, individual users
within the organization want and need Internet access, and if this is not provided via
their LAN, they will use dial-up capability from their PC to an Internet service
provider (ISP). However, while Internet access provides benefits to the organization,

it enables the outside world to reach and interact with local network assets. This
creates a threat to the organization. While it is possible to equip each workstation
and server on the premises network with strong security features, such as intrusion
protection, this may not be sufficient and in some cases is not cost-effective. Consider
a network with hundreds or even thousands of systems, running various operating
systems, such as different versions of UNIX and Windows. When a security flaw is
discovered, each potentially affected system must be upgraded to fix that flaw. This
requires scaleable configuration management and aggressive patching to function
effectively. While difficult, this is possible and is necessary if only host-based security
is used. A widely accepted alternative or at least complement to host-based security
services is the firewall.The firewall is inserted between the premises network and the
Internet to establish a controlled link and to erect an outer security wall or perime-
ter.The aim of this perimeter is to protect the premises network from Internet-based
attacks and to provide a single choke point where security and auditing can be
imposed. The firewall may be a single computer system or a set of two or more
systems that cooperate to perform the firewall function.

The firewall, then, provides an additional layer of defense, insulating the inter-
nal systems from external networks. This follows the classic military doctrine of
“defense in depth,” which is just as applicable to IT security.

11.2 FIREWALL CHARACTERISTICS

[BELL94b] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the firewall.
This is achieved by physically blocking all access to the local network except
via the firewall. Various configurations are possible, as explained later in this
chapter.

2. Only authorized traffic, as defined by the local security policy, will be allowed to
pass. Various types of firewalls are used, which implement various types of secu-
rity policies, as explained later in this chapter.

3. The firewall itself is immune to penetration.This implies the use of a hardened
system with a secured operating system.Trusted computer systems are suitable
for hosting a firewall and often required in government applications.

[SMIT97] lists four general techniques that firewalls use to control access and
enforce the site’s security policy. Originally, firewalls focused primarily on service
control, but they have since evolved to provide all four:

• Service control: Determines the types of Internet services that can be
accessed, inbound or outbound. The firewall may filter traffic on the basis of
IP address, protocol, or port number; may provide proxy software that receives
and interprets each service request before passing it on; or may host the server
software itself, such as a Web or mail service.

• Direction control: Determines the direction in which particular service
requests may be initiated and allowed to flow through the firewall.

376 CHAPTER 11 / FIREWALLS

11.2 / FIREWALL CHARACTERISTICS 377

• User control: Controls access to a service according to which user is attempt-
ing to access it. This feature is typically applied to users inside the firewall
perimeter (local users). It may also be applied to incoming traffic from exter-
nal users; the latter requires some form of secure authentication technology,
such as is provided in IPsec (Chapter 8).

• Behavior control: Controls how particular services are used. For example, the
firewall may filter e-mail to eliminate spam, or it may enable external access to
only a portion of the information on a local Web server.

Before proceeding to the details of firewall types and configurations, it is best
to summarize what one can expect from a firewall. The following capabilities are
within the scope of a firewall:

1. A firewall defines a single choke point that keeps unauthorized users out of
the protected network, prohibits potentially vulnerable services from entering
or leaving the network, and provides protection from various kinds of IP
spoofing and routing attacks.The use of a single choke point simplifies security
management because security capabilities are consolidated on a single system
or set of systems.

2. A firewall provides a location for monitoring security-related events. Audits and
alarms can be implemented on the firewall system.

3. A firewall is a convenient platform for several Internet functions that are not
security related. These include a network address translator, which maps local
addresses to Internet addresses, and a network management function that audits
or logs Internet usage.

4. A firewall can serve as the platform for IPsec. Using the tunnel mode capabil-
ity described in Chapter 8, the firewall can be used to implement virtual
private networks.

Firewalls have their limitations, including the following:

1. The firewall cannot protect against attacks that bypass the firewall. Internal
systems may have dial-out capability to connect to an ISP. An internal LAN
may support a modem pool that provides dial-in capability for traveling
employees and telecommuters.

2. The firewall may not protect fully against internal threats, such as a disgruntled
employee or an employee who unwittingly cooperates with an external
attacker.

3. An improperly secured wireless LAN may be accessed from outside the organi-
zation. An internal firewall that separates portions of an enterprise network
cannot guard against wireless communications between local systems on differ-
ent sides of the internal firewall.

4. A laptop, PDA, or portable storage device may be used and infected outside
the corporate network, and then attached and used internally.

378 CHAPTER 11 / FIREWALLS

11.3 TYPES OF FIREWALLS

A firewall may act as a packet filter. It can operate as a positive filter, allowing to
pass only packets that meet specific criteria, or as a negative filter, rejecting any
packet that meets certain criteria. Depending on the type of firewall, it may examine
one or more protocol headers in each packet, the payload of each packet, or the pat-
tern generated by a sequence of packets. In this section, we look at the principal
types of firewalls.

Packet Filtering Firewall

A packet filtering firewall applies a set of rules to each incoming and outgoing IP
packet and then forwards or discards the packet (Figure 11.1b). The firewall is typi-
cally configured to filter packets going in both directions (from and to the internal
network). Filtering rules are based on information contained in a network packet:

• Source IP address: The IP address of the system that originated the IP packet
(e.g., 192.178.1.1)

• Destination IP address: The IP address of the system the IP packet is trying to
reach (e.g., 192.168.1.2)

• Source and destination transport-level address: The transport-level (e.g., TCP
or UDP) port number, which defines applications such as SNMP or TELNET

• IP protocol field: Defines the transport protocol

• Interface: For a firewall with three or more ports, which interface of the fire-
wall the packet came from or which interface of the firewall the packet is des-
tined for

The packet filter is typically set up as a list of rules based on matches to fields
in the IP or TCP header. If there is a match to one of the rules, that rule is invoked
to determine whether to forward or discard the packet. If there is no match to any
rule, then a default action is taken. Two default policies are possible:

• Default = discard: That which is not expressly permitted is prohibited.

• Default = forward: That which is not expressly prohibited is permitted.

The default discard policy is more conservative. Initially, everything is
blocked, and services must be added on a case-by-case basis. This policy is more
visible to users, who are more likely to see the firewall as a hindrance. However,
this is the policy likely to be preferred by businesses and government organiza-
tions. Further, visibility to users diminishes as rules are created. The default for-
ward policy increases ease of use for end users but provides reduced security; the
security administrator must, in essence, react to each new security threat as it
becomes known. This policy may be used by generally more open organizations,
such as universities.

Table 11.1, from [BELL94b], gives some examples of packet filtering rulesets.
In each set, the rules are applied top to bottom. The “*” in a field is a wildcard

11.3 / TYPES OF FIREWALLS 379

External (untrusted) network
(e.g., Internet)

Internal (protected) network
(e.g., enterprise network) Firewall

(a) General model

(d) Application proxy firewall

Physical

Network
access

Internet

Transport

Application

Physical

Network
access

Internet

Transport

Application

Application proxy

External
transport

connection

Internal
transport

connection

(b) Packet filtering firewall

Physical

Network
access

Internet

Transport

ApplicationEnd-to-end
transport

connection

End-to-end
transport

connection

(c) Stateful inspection firewall

Physical

Network
access

Internet

Transport

ApplicationEnd-to-end
transport

connection

End-to-end
transport

connection

(e) Circuit-level proxy firewall

Physical

Network
access

Internet

Transport

Application

Physical

Network
access

Internet

Transport

Application

Circuit-level proxy

External
transport

connection

Internal
transport

connection

State
info

Figure 11.1 Types of Firewalls

380 CHAPTER 11 / FIREWALLS

Table 11.1 Packet-Filtering Examples

Rule Set A

action ourhost port theirhost port comment

block * * SPIGOT * we don’t trust these people

allow OUR-GW 25 * * connection to our SMTP port

Rule Set B

action ourhost port theirhost port comment

block * * * * default

Rule Set C

action ourhost port theirhost port comment

allow * * * 25 connection to their SMTP port

Rule Set D

action src port dest port flags comment

allow {our hosts} * * 25 our packets to their SMTP port

allow * 25 * * ACK their replies

Rule Set E

action src port dest port flags comment

allow {our hosts} * * * our outgoing calls

allow * * * * ACK replies to our calls

allow * * * >1024 traffic to nonservers

designator that matches everything. We assume that the default = discard policy is
in force.

A. Inbound mail is allowed (port 25 is for SMTP incoming), but only to a gateway
host. However, packets from a particular external host, SPIGOT, are blocked
because that host has a history of sending massive files in e-mail messages.

B. This is an explicit statement of the default policy. All rulesets include this rule
implicitly as the last rule.

C. This ruleset is intended to specify that any inside host can send mail to the out-
side.A TCP packet with a destination port of 25 is routed to the SMTP server on
the destination machine. The problem with this rule is that the use of port 25 for
SMTP receipt is only a default; an outside machine could be configured to have
some other application linked to port 25.As this rule is written, an attacker could
gain access to internal machines by sending packets with a TCP source port num-
ber of 25.

D. This ruleset achieves the intended result that was not achieved in C. The rules
take advantage of a feature of TCP connections. Once a connection is set up, the
ACK flag of a TCP segment is set to acknowledge segments sent from the other
side.Thus, this ruleset states that it allows IP packets where the source IP address

11.3 / TYPES OF FIREWALLS 381

is one of a list of designated internal hosts and the destination TCP port number
is 25. It also allows incoming packets with a source port number of 25 that include
the ACK flag in the TCP segment. Note that we explicitly designate source and
destination systems to define these rules explicitly.

E. This ruleset is one approach to handling FTP connections. With FTP, two TCP
connections are used: a control connection to set up the file transfer and a data
connection for the actual file transfer. The data connection uses a different port
number that is dynamically assigned for the transfer. Most servers, and hence
most attack targets, use low-numbered ports; most outgoing calls tend to use a
higher-numbered port, typically above 1023.Thus, this ruleset allows

— Packets that originate internally

— Reply packets to a connection initiated by an internal machine

— Packets destined for a high-numbered port on an internal machine

This scheme requires that the systems be configured so that only the appropriate
port numbers are in use.

Rule set E points out the difficulty in dealing with applications at the packet-
filtering level.Another way to deal with FTP and similar applications is either state-
ful packet filters or an application-level gateway, both described subsequently in this
section.

One advantage of a packet filtering firewall is its simplicity.Also, packet filters
typically are transparent to users and are very fast. [WACK02] lists the following
weaknesses of packet filter firewalls:

• Because packet filter firewalls do not examine upper-layer data, they cannot
prevent attacks that employ application-specific vulnerabilities or functions.
For example, a packet filter firewall cannot block specific application
commands; if a packet filter firewall allows a given application, all functions
available within that application will be permitted.

• Because of the limited information available to the firewall, the logging func-
tionality present in packet filter firewalls is limited. Packet filter logs normally
contain the same information used to make access control decisions (source
address, destination address, and traffic type).

• Most packet filter firewalls do not support advanced user authentication
schemes. Once again, this limitation is mostly due to the lack of upper-layer
functionality by the firewall.

• Packet filter firewalls are generally vulnerable to attacks and exploits that
take advantage of problems within the TCP/IP specification and protocol
stack, such as network layer address spoofing. Many packet filter firewalls
cannot detect a network packet in which the OSI Layer 3 addressing informa-
tion has been altered. Spoofing attacks are generally employed by intruders to
bypass the security controls implemented in a firewall platform.

• Finally, due to the small number of variables used in access control decisions,
packet filter firewalls are susceptible to security breaches caused by improper
configurations. In other words, it is easy to accidentally configure a packet

382 CHAPTER 11 / FIREWALLS

filter firewall to allow traffic types, sources, and destinations that should be
denied based on an organization’s information security policy.

Some of the attacks that can be made on packet filtering firewalls and the
appropriate countermeasures are the following:

• IP address spoofing: The intruder transmits packets from the outside with a
source IP address field containing an address of an internal host. The attacker
hopes that the use of a spoofed address will allow penetration of systems that
employ simple source address security, in which packets from specific trusted
internal hosts are accepted. The countermeasure is to discard packets with an
inside source address if the packet arrives on an external interface. In fact, this
countermeasure is often implemented at the router external to the firewall.

• Source routing attacks: The source station specifies the route that a packet
should take as it crosses the Internet, in the hopes that this will bypass security
measures that do not analyze the source routing information. The counter-
measure is to discard all packets that use this option.

• Tiny fragment attacks: The intruder uses the IP fragmentation option to create
extremely small fragments and force the TCP header information into a sepa-
rate packet fragment. This attack is designed to circumvent filtering rules that
depend on TCP header information. Typically, a packet filter will make a fil-
tering decision on the first fragment of a packet. All subsequent fragments of
that packet are filtered out solely on the basis that they are part of the packet
whose first fragment was rejected.The attacker hopes that the filtering firewall
examines only the first fragment and that the remaining fragments are passed
through. A tiny fragment attack can be defeated by enforcing a rule that the
first fragment of a packet must contain a predefined minimum amount of
the transport header. If the first fragment is rejected, the filter can remember
the packet and discard all subsequent fragments.

Stateful Inspection Firewalls

A traditional packet filter makes filtering decisions on an individual packet basis
and does not take into consideration any higher layer context.To understand what is
meant by context and why a traditional packet filter is limited with regard to con-
text, a little background is needed. Most standardized applications that run on top of
TCP follow a client/server model. For example, for the Simple Mail Transfer
Protocol (SMTP), e-mail is transmitted from a client system to a server system. The
client system generates new e-mail messages, typically from user input. The server
system accepts incoming e-mail messages and places them in the appropriate user
mailboxes. SMTP operates by setting up a TCP connection between client and
server, in which the TCP server port number, which identifies the SMTP server
application, is 25. The TCP port number for the SMTP client is a number between
1024 and 65535 that is generated by the SMTP client.

In general, when an application that uses TCP creates a session with a remote
host, it creates a TCP connection in which the TCP port number for the remote
(server) application is a number less than 1024 and the TCP port number for the local

11.3 / TYPES OF FIREWALLS 383

Table 11.2 Example Stateful Firewall Connection State Table [WACK02]

Source Address Source Port Destination
Address

Destination Port Connection
State

192.168.1.100 1030 210.22.88.29 80 Established

192.168.1.102 1031 216.32.42.123 80 Established

192.168.1.101 1033 173.66.32.122 25 Established

192.168.1.106 1035 177.231.32.12 79 Established

223.43.21.231 1990 192.168.1.6 80 Established

2122.22.123.32 2112 192.168.1.6 80 Established

210.922.212.18 3321 192.168.1.6 80 Established

24.102.32.23 1025 192.168.1.6 80 Established

223.21.22.12 1046 192.168.1.6 80 Established

(client) application is a number between 1024 and 65535.The numbers less than 1024
are the “well-known” port numbers and are assigned permanently to particular
applications (e.g., 25 for server SMTP). The numbers between 1024 and 65535 are
generated dynamically and have temporary significance only for the lifetime of a
TCP connection.

A simple packet filtering firewall must permit inbound network traffic on all
these high-numbered ports for TCP-based traffic to occur. This creates a vulnerabil-
ity that can be exploited by unauthorized users.

A stateful inspection packet firewall tightens up the rules for TCP traffic by
creating a directory of outbound TCP connections, as shown in Table 11.2. There is
an entry for each currently established connection. The packet filter will now allow
incoming traffic to high-numbered ports only for those packets that fit the profile of
one of the entries in this directory.

A stateful packet inspection firewall reviews the same packet information as a
packet filtering firewall, but also records information about TCP connections
(Figure 11.1c). Some stateful firewalls also keep track of TCP sequence numbers to
prevent attacks that depend on the sequence number, such as session hijacking. Some
even inspect limited amounts of application data for some well-known protocols like
FTP, IM and SIPS commands, in order to identify and track related connections.

Application-Level Gateway

An application-level gateway, also called an application proxy, acts as a relay of
application-level traffic (Figure 11.1d). The user contacts the gateway using a
TCP/IP application, such as Telnet or FTP, and the gateway asks the user for the
name of the remote host to be accessed. When the user responds and provides a
valid user ID and authentication information, the gateway contacts the application
on the remote host and relays TCP segments containing the application data
between the two endpoints. If the gateway does not implement the proxy code for a
specific application, the service is not supported and cannot be forwarded across the
firewall. Further, the gateway can be configured to support only specific features of

384 CHAPTER 11 / FIREWALLS

an application that the network administrator considers acceptable while denying
all other features.

Application-level gateways tend to be more secure than packet filters. Rather
than trying to deal with the numerous possible combinations that are to be allowed
and forbidden at the TCP and IP level, the application-level gateway need only
scrutinize a few allowable applications. In addition, it is easy to log and audit all
incoming traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing
overhead on each connection. In effect, there are two spliced connections between
the end users, with the gateway at the splice point, and the gateway must examine
and forward all traffic in both directions.

Circuit-Level Gateway

A fourth type of firewall is the circuit-level gateway or circuit-level proxy
(Figure 11.1e). This can be a stand-alone system or it can be a specialized func-
tion performed by an application-level gateway for certain applications. As with
an application gateway, a circuit-level gateway does not permit an end-to-end
TCP connection; rather, the gateway sets up two TCP connections, one between
itself and a TCP user on an inner host and one between itself and a TCP user on
an outside host. Once the two connections are established, the gateway typically
relays TCP segments from one connection to the other without examining the
contents. The security function consists of determining which connections will be
allowed.

A typical use of circuit-level gateways is a situation in which the system admin-
istrator trusts the internal users. The gateway can be configured to support applica-
tion-level or proxy service on inbound connections and circuit-level functions for
outbound connections. In this configuration, the gateway can incur the processing
overhead of examining incoming application data for forbidden functions but does
not incur that overhead on outgoing data.

An example of a circuit-level gateway implementation is the SOCKS package
[KOBL92]; version 5 of SOCKS is specified in RFC 1928. The RFC defines SOCKS
in the following fashion:

The protocol described here is designed to provide a framework for
client-server applications in both the TCP and UDP domains to
conveniently and securely use the services of a network firewall.
The protocol is conceptually a “shim-layer” between the application
layer and the transport layer, and as such does not provide network-
layer gateway services, such as forwarding of ICMP messages.

SOCKS consists of the following components:

• The SOCKS server, which often runs on a UNIX-based firewall. SOCKS is
also implemented on Windows systems.

• The SOCKS client library, which runs on internal hosts protected by the
firewall.

11.4 / FIREWALL BASING 385

• SOCKS-ified versions of several standard client programs such as FTP and
TELNET. The implementation of the SOCKS protocol typically involves
either the recompilation or relinking of TCP-based client applications, or the
use of alternate dynamically loaded libraries, to use the appropriate encapsu-
lation routines in the SOCKS library.

When a TCP-based client wishes to establish a connection to an object that is
reachable only via a firewall (such determination is left up to the implementa-
tion), it must open a TCP connection to the appropriate SOCKS port on the
SOCKS server system.The SOCKS service is located on TCP port 1080. If the con-
nection request succeeds, the client enters a negotiation for the authentication
method to be used, authenticates with the chosen method, and then sends a relay
request. The SOCKS server evaluates the request and either establishes the
appropriate connection or denies it. UDP exchanges are handled in a similar fash-
ion. In essence, a TCP connection is opened to authenticate a user to send and
receive UDP segments, and the UDP segments are forwarded as long as the TCP
connection is open.

11.4 FIREWALL BASING

It is common to base a firewall on a stand-alone machine running a common oper-
ating system, such as UNIX or Linux. Firewall functionality can also be imple-
mented as a software module in a router or LAN switch. In this section, we look at
some additional firewall basing considerations.

Bastion Host

A bastion host is a system identified by the firewall administrator as a critical strong
point in the network’s security.Typically, the bastion host serves as a platform for an
application-level or circuit-level gateway. Common characteristics of a bastion host
are as follows:

• The bastion host hardware platform executes a secure version of its operating
system, making it a hardened system.

• Only the services that the network administrator considers essential are
installed on the bastion host. These could include proxy applications for DNS,
FTP, HTTP, and SMTP.

• The bastion host may require additional authentication before a user is
allowed access to the proxy services. In addition, each proxy service may
require its own authentication before granting user access.

• Each proxy is configured to support only a subset of the standard application’s
command set.

• Each proxy is configured to allow access only to specific host systems. This
means that the limited command/feature set may be applied only to a subset of
systems on the protected network.

386 CHAPTER 11 / FIREWALLS

• Each proxy maintains detailed audit information by logging all traffic, each
connection, and the duration of each connection. The audit log is an essential
tool for discovering and terminating intruder attacks.

• Each proxy module is a very small software package specifically designed for
network security. Because of its relative simplicity, it is easier to check such
modules for security flaws. For example, a typical UNIX mail application may
contain over 20,000 lines of code, while a mail proxy may contain fewer
than 1000.

• Each proxy is independent of other proxies on the bastion host. If there is a
problem with the operation of any proxy, or if a future vulnerability is discov-
ered, it can be uninstalled without affecting the operation of the other proxy
applications. Also, if the user population requires support for a new service,
the network administrator can easily install the required proxy on the
bastion host.

• A proxy generally performs no disk access other than to read its initial config-
uration file. Hence, the portions of the file system containing executable code
can be made read only. This makes it difficult for an intruder to install Trojan
horse sniffers or other dangerous files on the bastion host.

• Each proxy runs as a nonprivileged user in a private and secured directory on
the bastion host.

Host-Based Firewalls

A host-based firewall is a software module used to secure an individual host.
Such modules are available in many operating systems or can be provided as an
add-on package. Like conventional stand-alone firewalls, host-resident firewalls
filter and restrict the flow of packets. A common location for such firewalls is a
server. There are several advantages to the use of a server-based or workstation-
based firewall:

• Filtering rules can be tailored to the host environment. Specific corporate
security policies for servers can be implemented, with different filters for
servers used for different application.

• Protection is provided independent of topology. Thus both internal and exter-
nal attacks must pass through the firewall.

• Used in conjunction with stand-alone firewalls, the host-based firewall pro-
vides an additional layer of protection. A new type of server can be added to
the network, with its own firewall, without the necessity of altering the net-
work firewall configuration.

Personal Firewall

A personal firewall controls the traffic between a personal computer or workstation
on one side and the Internet or enterprise network on the other side. Personal fire-
wall functionality can be used in the home environment and on corporate intranets.
Typically, the personal firewall is a software module on the personal computer. In a

11.4 / FIREWALL BASING 387

home environment with multiple computers connected to the Internet, firewall
functionality can also be housed in a router that connects all of the home computers
to a DSL, cable modem, or other Internet interface.

Personal firewalls are typically much less complex than either server-based
firewalls or stand-alone firewalls.The primary role of the personal firewall is to deny
unauthorized remote access to the computer.The firewall can also monitor outgoing
activity in an attempt to detect and block worms and other malware.

An example of a personal firewall is the capability built in to the Mac OS X
operating system. When the user enables the personal firewall in Mac OS X,
all inbound connections are denied except for those the user explicitly permits.
Figure 11.2 shows this simple interface. The list of inbound services that can be
selectively reenabled, with their port numbers, includes the following:

• Personal file sharing (548, 427)

• Windows sharing (139)

• Personal Web sharing (80, 427)

• Remote login - SSH (22)

• FTP access (20-21, 1024-64535 from 20-21)

• Remote Apple events (3031)

• Printer sharing (631, 515)

• IChat Rendezvous (5297, 5298)

• ITunes Music Sharing (3869)

• CVS (2401)

Figure 11.2 Example Personal Firewall Interface

388 CHAPTER 11 / FIREWALLS

• Gnutella/Limewire (6346)

• ICQ (4000)

• IRC (194)

• MSN Messenger (6891-6900)

• Network Time (123)

• Retrospect (497)

• SMB (without netbios-445)

• Timbuktu (407)

• VNC (5900-5902)

• WebSTAR Admin (1080, 1443)

When FTP access is enabled, ports 20 and 21 on the local machine are opened
for FTP; if others connect to this computer from ports 20 or 21, the ports 1024
through 64535 are open.

For increased protection, advanced firewall features are available through
easy-to-configure checkboxes. Stealth mode hides the Mac on the Internet by drop-
ping unsolicited communication packets, making it appear as though no Mac is
present. UDP packets can be blocked, restricting network traffic to TCP packets
only for open ports. The firewall also supports logging, an important tool for check-
ing on unwanted activity.

11.5 FIREWALL LOCATION AND CONFIGURATIONS

As Figure 11.1a indicates, a firewall is positioned to provide a protective barrier
between an external, potentially untrusted source of traffic and an internal network.
With that general principle in mind, a security administrator must decide on the
location and on the number of firewalls needed. In this section, we look at some
common options.

DMZ Networks

Figure 11.3 suggests the most common distinction, that between an internal and an
external firewall. An external firewall is placed at the edge of a local or enterprise
network, just inside the boundary router that connects to the Internet or some wide
area network (WAN). One or more internal firewalls protect the bulk of the enter-
prise network. Between these two types of firewalls are one or more networked
devices in a region referred to as a DMZ (demilitarized zone) network. Systems
that are externally accessible but need some protections are usually located on
DMZ networks. Typically, the systems in the DMZ require or foster external con-
nectivity, such as a corporate Web site, an e-mail server, or a DNS (domain name
system) server.

The external firewall provides a measure of access control and protection for
the DMZ systems consistent with their need for external connectivity. The external

11.5 / FIREWALL LOCATION AND CONFIGURATIONS 389

Workstations

Application and database servers

Web
server(s)

Email
server

Internal DMZ network

Boundary
router

External
firewall

LAN
switch

LAN
switch

Internal
firewall

Internal protected network

DNS
server

Internet

Figure 11.3 Example Firewall Configuration

firewall also provides a basic level of protection for the remainder of the enterprise
network. In this type of configuration, internal firewalls serve three purposes:

1. The internal firewall adds more stringent filtering capability, compared to the
external firewall, in order to protect enterprise servers and workstations from
external attack.

2. The internal firewall provides two-way protection with respect to the DMZ. First,
the internal firewall protects the remainder of the network from attacks launched
from DMZ systems. Such attacks might originate from worms, rootkits, bots, or
other malware lodged in a DMZ system. Second, an internal firewall can protect
the DMZ systems from attack from the internal protected network.

390 CHAPTER 11 / FIREWALLS

3. Multiple internal firewalls can be used to protect portions of the internal
network from each other. For example, firewalls can be configured so that
internal servers are protected from internal workstations and vice versa.
A common practice is to place the DMZ on a different network interface on
the external firewall from that used to access the internal networks.

Virtual Private Networks

In today’s distributed computing environment, the virtual private network (VPN)
offers an attractive solution to network managers. In essence, a VPN consists of a set
of computers that interconnect by means of a relatively unsecure network and that
make use of encryption and special protocols to provide security. At each corporate
site, workstations, servers, and databases are linked by one or more local area net-
works (LANs). The Internet or some other public network can be used to intercon-
nect sites, providing a cost savings over the use of a private network and offloading
the wide area network management task to the public network provider. That same
public network provides an access path for telecommuters and other mobile
employees to log on to corporate systems from remote sites.

But the manager faces a fundamental requirement: security. Use of a public
network exposes corporate traffic to eavesdropping and provides an entry point for
unauthorized users. To counter this problem, a VPN is needed. In essence, a VPN
uses encryption and authentication in the lower protocol layers to provide a secure
connection through an otherwise insecure network, typically the Internet. VPNs are
generally cheaper than real private networks using private lines but rely on having
the same encryption and authentication system at both ends.The encryption may be
performed by firewall software or possibly by routers. The most common protocol
mechanism used for this purpose is at the IP level and is known as IPsec.

An organization maintains LANs at dispersed locations. A logical means of
implementing an IPsec is in a firewall, as shown in Figure 11.4, which essentially
repeats Figure 8.1. If IPsec is implemented in a separate box behind (internal to) the
firewall, then VPN traffic passing through the firewall in both directions is
encrypted. In this case, the firewall is unable to perform its filtering function or
other security functions, such as access control, logging, or scanning for viruses.
IPsec could be implemented in the boundary router, outside the firewall. However,
this device is likely to be less secure than the firewall and thus less desirable as an
IPsec platform.

Distributed Firewalls

A distributed firewall configuration involves stand-alone firewall devices plus host-
based firewalls working together under a central administrative control. Figure 11.5
suggests a distributed firewall configuration. Administrators can configure host-
resident firewalls on hundreds of servers and workstations as well as configure
personal firewalls on local and remote user systems. Tools let the network adminis-
trator set policies and monitor security across the entire network. These firewalls
protect against internal attacks and provide protection tailored to specific machines
and applications. Stand-alone firewalls provide global protection, including internal
firewalls and an external firewall, as discussed previously.

11.5 / FIREWALL LOCATION AND CONFIGURATIONS 391

IP
Header

IP
Payload

IP
Header

IPsec
Header

Secure IP
Payload

IPH
eader IPsec

H
eader

Secure IP

PayloadIP
Hea

de
r

IP
se

c
Hea

de
r

Se
cu

re
 IP

Pa
yl

oa
d

IP
Header

IP
Payload

Firewall
with IPsec

Ethernet
switch

Ethernet
switch

User system
with IPsec

Firewall
with IPsec

Public (Internet)
or Private
Network

Figure 11.4 A VPN Security Scenario

With distributed firewalls, it may make sense to establish both an internal and
an external DMZ. Web servers that need less protection because they have less
critical information on them could be placed in an external DMZ, outside the exter-
nal firewall. What protection is needed is provided by host-based firewalls on these
servers.

An important aspect of a distributed firewall configuration is security moni-
toring. Such monitoring typically includes log aggregation and analysis, firewall
statistics, and fine-grained remote monitoring of individual hosts if needed.

Summary of Firewall Locations and Topologies

We can now summarize the discussion from Sections 11.4 and 11.5 to define a
spectrum of firewall locations and topologies. The following alternatives can be
identified:

• Host-resident firewall: This category includes personal firewall software and
firewall software on servers. Such firewalls can be used alone or as part of an
in-depth firewall deployment.

• Screening router: A single router between internal and external networks with
stateless or full packet filtering. This arrangement is typical for small
office/home office (SOHO) applications.

392 CHAPTER 11 / FIREWALLS

Workstations

Application and database servers

Web
server(s)

Email
server

Internal DMZ network

Boundary
router

External
firewall

LAN
switch

LAN
switch

host-resident
firewall

Internal
firewall

Internal protected network

DNS
server

Internet

Web
server(s)

External
DMZ network

Remote
users

Figure 11.5 Example Distributed Firewall Configuration

• Single bastion inline: A single firewall device between an internal and external
router (e.g., Figure 11.1a). The firewall may implement stateful filters and/or
application proxies. This is the typical firewall appliance configuration for
small to medium-sized organizations.

11.6 / RECOMMENDED READING AND WEB SITE 393

• Single bastion T: Similar to single bastion inline but has a third network
interface on bastion to a DMZ where externally visible servers are placed.
Again, this is a common appliance configuration for medium to large
organizations.

• Double bastion inline: Figure 11.3 illustrates this configuration, where the
DMZ is sandwiched between bastion firewalls. This configuration is common
for large businesses and government organizations.

• Double bastion T: The DMZ is on a separate network interface on the bastion
firewall. This configuration is also common for large businesses and govern-
ment organizations and may be required. For example, this configuration is
required for Australian government use (Australian Government Information
Technology Security Manual - ACSI33).

• Distributed firewall configuration: Illustrated in Figure 11.5. This configura-
tion is used by some large businesses and government organizations.

11.6 RECOMMENDED READING AND WEB SITE

A classic treatment of firewalls is [CHES03]. [LODI98], [OPPL97], and [BELL94b] are good
overview articles on the subject. [WACK02] is an excellent overview of firewall technology
and firewall policies. [AUDI04] and [WILS05] provide useful discussions of firewalls.

AUDI04 Audin, G. “Next-Gen Firewalls: What to Expect.” Business Communications
Review, June 2004.

BELL94b Bellovin, S., and Cheswick, W. “Network Firewalls.” IEEE Communications
Magazine, September 1994.

CHAP00 Chapman, D., and Zwicky, E. Building Internet Firewalls. Sebastopol, CA:
O’Reilly, 2000.

CHES03 Cheswick, W., and Bellovin, S. Firewalls and Internet Security: Repelling the
Wily Hacker. Reading, MA: Addison-Wesley, 2003.

LODI98 Lodin, S., and Schuba, C. “Firewalls Fend Off Invasions from the Net.” IEEE
Spectrum, February 1998.

OPPL97 Oppliger, R. “Internet Security: Firewalls and Beyond.” Communications of
the ACM, May 1997.

WACK02 Wack, J.; Cutler, K.; and Pole, J. Guidelines on Firewalls and Firewall Policy.
NIST Special Publication SP 800-41, January 2002.

WILS05 Wilson, J.“The Future of the Firewall.” Business Communications Review, May
2005.

Recommended Web Site:

• Firewall.com: Numerous links to firewall references and software resources.

394 CHAPTER 11 / FIREWALLS

11.7 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

Review Questions

11.1 List three design goals for a firewall.
11.2 List four techniques used by firewalls to control access and enforce a security policy.
11.3 What information is used by a typical packet filtering firewall?
11.4 What are some weaknesses of a packet filtering firewall?
11.5 What is the difference between a packet filtering firewall and a stateful inspection

firewall?
11.6 What is an application-level gateway?
11.7 What is a circuit-level gateway?
11.8 What are the differences among the firewalls of Figure 11.1?
11.9 What are the common characteristics of a bastion host?

11.10 Why is it useful to have host-based firewalls?
11.11 What is a DMZ network and what types of systems would you expect to find on such

networks?
11.12 What is the difference between an internal and an external firewall?

Problems

11.1 As was mentioned in Section 11.3, one approach to defeating the tiny fragment attack
is to enforce a minimum length of the transport header that must be contained in the
first fragment of an IP packet. If the first fragment is rejected, all subsequent frag-
ments can be rejected. However, the nature of IP is such that fragments may arrive
out of order. Thus, an intermediate fragment may pass through the filter before the
initial fragment is rejected. How can this situation be handled?

11.2 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to
Total Length – (4 × IHL). If this value is less than the required minimum (8 octets for
TCP), then this fragment and the entire packet are rejected. Suggest an alternative
method of achieving the same result using only the Fragment Offset field.

11.3 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that
results in new fragments overwriting any overlapped portions of previously received
fragments. Given such a reassembly implementation, an attacker could construct a
series of packets in which the lowest (zero-offset) fragment would contain innocuous
data (and thereby be passed by administrative packet filters), and in which some sub-
sequent packet having a non-zero offset would overlap TCP header information (des-
tination port, for instance) and cause it to be modified. The second packet would be
passed through most filter implementations because it does not have a zero fragment
offset. Suggest a method that could be used by a packet filter to counter this attack.

application-level gateway
bastion host
circuit-level gateway
distributed firewalls
DMZ

firewall
host-based firewall
IP address spoofing
IP security (IPsec)
packet filtering firewall

personal firewall
proxy
stateful inspection firewall
tiny fragment attack
virtual private network (VPN)

11.7 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 395

11.4 Table 11.3 shows a sample of a packet filter firewall ruleset for an imaginary network
of IP address that range from 192.168.1.0 to 192.168.1.254. Describe the effect of each
rule.

11.5 SMTP (Simple Mail Transfer Protocol) is the standard protocol for transferring mail
between hosts over TCP. A TCP connection is set up between a user agent and a
server program. The server listens on TCP port 25 for incoming connection requests.
The user end of the connection is on a TCP port number above 1023. Suppose you
wish to build a packet filter rule set allowing inbound and outbound SMTP traffic.
You generate the following ruleset:

Table 11.3 Sample Packet Filter Firewall Ruleset

Source Address Source Port Dest Address Dest Port Action

1 Any Any 192.168.1.0 > 1023 Allow

2 192.168.1.1 Any Any Any Deny

3 Any Any 192.168.1.1 Any Deny

4 192.168.1.0 Any Any Any Allow

5 Any Any 192.168.1.2 SMTP Allow

6 Any Any 192.168.1.3 HTTP Allow

7 Any Any Any Any Deny

Rule Direction Src Addr Dest Addr Protocol Dest Port Action

A In External Internal TCP 25 Permit

B Out Internal External TCP >1023 Permit

C Out Internal External TCP 25 Permit

D In External Internal TCP >1023 Permit

E Either Any Any Any Any Deny

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

1 In 192.168.3.4 172.16.1.1 TCP 25 ?

2 Out 172.16.1.1 192.168.3.4 TCP 1234 ?

3 Out 172.16.1.1 192.168.3.4 TCP 25 ?

4 In 192.168.3.4 172.16.1.1 TCP 1357 ?

a. Describe the effect of each rule.
b. Your host in this example has IP address 172.16.1.1. Someone tries to send e-mail

from a remote host with IP address 192.168.3.4. If successful, this generates an
SMTP dialogue between the remote user and the SMTP server on your host con-
sisting of SMTP commands and mail. Additionally, assume that a user on your
host tries to send e-mail to the SMTP server on the remote system. Four typical
packets for this scenario are as shown:

Indicate which packets are permitted or denied and which rule is used in each
case.

396 CHAPTER 11 / FIREWALLS

c. Someone from the outside world (10.1.2.3) attempts to open a connection from
port 5150 on a remote host to the Web proxy server on port 8080 on one of your
local hosts (172.16.3.4), in order to carry out an attack. Typical packets are as
follows:

Will the attack succeed? Give details.
11.6 To provide more protection, the ruleset from the preceding problem is modified as

follows:

a. Describe the change.
b. Apply this new ruleset to the same six packets of the preceding problem. Indicate

which packets are permitted or denied and which rule is used in each case.
11.7 A hacker uses port 25 as the client port on his or her end to attempt to open a con-

nection to your Web proxy server.
a. The following packets might be generated:

Explain why this attack will succeed, using the ruleset of the preceding problem.
b. When a TCP connection is initiated, the ACK bit in the TCP header is not set.

Subsequently, all TCP headers sent over the TCP connection have the ACK bit
set. Use this information to modify the ruleset of the preceding problem to
prevent the attack just described.

11.8 A common management requirement is that “all external Web traffic must flow via
the organization’s Web proxy.” However, that requirement is easier stated than imple-
mented. Discuss the various problems and issues, possible solutions, and limitations
with supporting this requirement. In particular consider issues such as identifying
exactly what constitutes “Web traffic” and how it may be monitored, given the large
range of ports and various protocols used by Web browsers and servers.

11.9 Consider the threat of “theft/breach of proprietary or confidential information held in
key data files on the system.” One method by which such a breach might occur is
the accidental/deliberate e-mailing of information to a user outside to the organiza-
tion. A possible countermeasure to this is to require all external e-mail to be given a

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

5 In 10.1.2.3 172.16.3.4 TCP 8080 ?

6 Out 172.16.3.4 10.1.2.3 TCP 5150 ?

Rule Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

A In External Internal TCP >1023 25 Permit

B Out Internal External TCP 25 >1023 Permit

C Out Internal External TCP >1023 25 Permit

D In External Internal TCP 25 >1023 Permit

E Either Any Any Any Any Any Deny

Packet Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

7 In 10.1.2.3 172.16.3.4 TCP 25 8080 ?

8 Out 172.16.3.4 10.1.2.3 TCP 8080 25 ?

11.7 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 397

sensitivity tag (classification if you like) in its subject and for external e-mail to have
the lowest sensitivity tag. Discuss how this measure could be implemented in a firewall
and what components and architecture would be needed to do this.

11.10 You are given the following “informal firewall policy” details to be implemented
using a firewall like that in Figure 11.3:

1. E-mail may be sent using SMTP in both directions through the firewall, but it
must be relayed via the DMZ mail gateway that provides header sanitization and
content filtering. External e-mail must be destined for the DMZ mail server.

2. Users inside may retrieve their e-mail from the DMZ mail gateway, using either
POP3 or POP3S, and authenticate themselves.

3. Users outside may retrieve their e-mail from the DMZ mail gateway, but only if
they use the secure POP3 protocol, and authenticate themselves

4. Web requests (both insecure and secure) are allowed from any internal user out
through the firewall but must be relayed via the DMZ Web proxy, which provides
content filtering (noting this is not possible for secure requests), and users must
authenticate with the proxy for logging.

5. Web requests (both insecure and secure) are allowed from anywhere on the
Internet to the DMZ Web server

6. DNS lookup requests by internal users allowed via the DMZ DNS server, which
queries to the Internet.

7. External DNS requests are provided by the DMZ DNS server.
8. Management and update of information on the DMZ servers is allowed using

secure shell connections from relevant authorized internal users (may have differ-
ent sets of users on each system as appropriate).

9. SNMP management requests are permitted from the internal management hosts
to the firewalls, with the firewalls also allowed to send management traps (i.e.,
notification of some event occurring) to the management hosts

Design suitable packet filter rulesets (similar to those shown in Table 11.1) to be
implemented on the “External Firewall” and the “Internal Firewall” to satisfy the
aforementioned policy requirements.

APPENDIX A

SOME ASPECTS OF NUMBER THEORY
A.1 Prime and Relatively Prime Numbers

Divisors
Prime Numbers
Relatively Prime Numbers

A.2 Modular Arithmetic

398

A.1 / PRIME AND RELATIVELY PRIME NUMBERS 399

The Devil said to Daniel Webster:“Set me a task I can’t carry out, and I’ll give you anything in
the world you ask for.”

Daniel Webster:“Fair enough. Prove that for n greater than 2, the equation an + bn = cn

has no non-trivial solution in the integers.”
They agreed on a three-day period for the labor, and the Devil disappeared.
At the end of three days, the Devil presented himself, haggard, jumpy, biting his lip. Daniel

Webster said to him,“Well, how did you do at my task? Did you prove the theorem?”
“Eh? No . . . no, I haven’t proved it.”
“Then I can have whatever I ask for? Money? The Presidency?”
“What? Oh, that—of course.But listen! If we could just prove the following two lemmas—”

—The Mathematical Magpie, Clifton Fadiman

In this appendix, we provide some background on two concepts referenced in this
book: prime numbers and modular arithmetic.

A.1 PRIME AND RELATIVELY PRIME NUMBERS

In this section, unless otherwise noted, we deal only with nonnegative integers. The
use of negative integers would introduce no essential differences.

Divisors

We say that b 0 divides a if a mb for some m, where a, b, and m are integers. That
is, b divides a if there is no remainder on division. The notation b a is commonly used
to mean b divides a. Also, if b a, we say that b is a divisor of a. For example, the
positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The following relations hold:

• If a 1, then a ;1.
• If a b and b a, then a = ;b.
• Any b 0 divides 0.
• If b g and b h, then b (mg + nh) for arbitrary integers m and n.

To see this last point, note that

If b g, then g is of the form g = b × g1 for some integer g1.

If b h, then h is of the form h = b × h1 for some integer h1.

So

mg + nh = mbg1 + nbh1 = b × (mg1 + nh1)

and therefore b divides mg + nh.

Prime Numbers

An integer p > 1 is a prime number if its only divisors are ;1 and ;p. Prime
numbers play a critical role in number theory and in the techniques discussed in
Chapter 3.

ƒ
ƒ

ƒƒƒ
Z

ƒƒ
=ƒ

ƒ
ƒ

=Z

400 APPENDIX A / SOME ASPECTS OF NUMBER THEORY

Any integer a > 1 can be factored in a unique way as

where p1 6 p2 6 6 pt are prime numbers and where each ai is a positive integer.
For example, 91 = 7 × 13 and 11011 = 7 × 112 × 13.

It is useful to cast this another way. If P is the set of all prime numbers, then
any positive integer can be written uniquely in the following form:

The right-hand side is the product over all possible prime numbers p; for any particular
value of a, most of the exponents ap will be 0.

The value of any given positive integer can be specified by simply listing all the
nonzero exponents in the foregoing formulation. Thus, the integer 12 is represented
by {a2 = 2, a3 = 1}, and the integer 18 is represented by {a2 = 1, a3 = 2}. Multiplication
of two numbers is equivalent to adding the corresponding exponents:

k = mn kp = mp + np for all p

What does it mean, in terms of these prime factors, to say that a b? Any integer
of the form pk can be divided only by an integer that is of a lesser or equal power of
the same prime number, pj with j ≤ k. Thus, we can say

a b ap bp for all p

Relatively Prime Numbers

We will use the notation gcd (a, b) to mean the greatest common divisor of a and b.
The positive integer c is said to be the greatest common divisor of a and b if

1. c is a divisor of a and of b.
2. Any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k a and k b]

Because we require that the greatest common divisor be positive, gcd(a, b) =
gcd(a, -b) = gcd(-a, b) = gcd(-a, -b). In general, gcd(a, b) = gcd(a , b). For example,
gcd(60, 24) = gcd(60, -24) = 12. Also, because all nonzero integers divide 0, we have
gcd(a, 0) = a

It is easy to determine the greatest common divisor of two positive integers if
we express each integer as the product of primes. For example,

300 = 22 × 31 × 52

18 = 21 × 32

gcd(18, 300) = 21 × 31 × 50 = 6

In general,

k = gcd(a, b) kp = min(ap, bp) for all p:

ƒ .ƒ

ƒƒƒƒ

ƒƒ

…:ƒ

ƒ

:

a = q
p � P

pap where each ap Ú 0

Á

a = p1
a1 * p2

a2 * Á * pt
at

A.2 / MODULAR ARITHMETIC 401

Determining the prime factors of a large number is no easy task, so the
preceding relationship does not directly lead to a way of calculating the greatest
common divisor.

The integers a and b are relatively prime if they have no prime factors in com-
mon, that is, if their only common factor is 1. This is equivalent to saying that a and
b are relatively prime if gcd(a, b) = 1. For example, 8 and 15 are relatively prime
because the divisors of 8 are 1, 2, 4, and 8, and the divisors of 15 are 1, 3, 5, and 15, so
1 is the only number on both lists.

A.2 MODULAR ARITHMETIC

Given any positive integer n and any nonnegative integer a, if we divide a by n,
we get an integer quotient q and an integer remainder r that obey the following
relationship:

a = qn + r 0 r 6 n; q =

where x is the largest integer less than or equal to x.
Figure A.1a demonstrates that, given a and positive n, it is always possible

to find q and r that satisfy the preceding relationship. Represent the integers on
the number line; a will fall somewhere on that line (positive a is shown, a similar
demonstration can be made for negative a). Starting at 0, proceed to n, 2n, up to
qn such that qn a and (q + 1)n> a. The distance from qn to a is r, and we have
found the unique values of q and r. The remainder r is often referred to as a
residue.

If a is an integer and n is a positive integer, we define a mod n to be the remainder
when a is divided by n.Thus, for any integer a, we can always write:

a = a/n × n + (a mod n);:

…

;:
:a/n;…

0

n 2n 3n qn (q + 1)na

n

r(a) General relationship

0 15

15

10

30
= 2 15

70

(b) Example: 70 = (4 15) + 10

45
= 3 15

60
= 4 15

75
= 5 15

Figure A.1 The Relationship a = qn + r; 0 r 6 n…

402 APPENDIX A / SOME ASPECTS OF NUMBER THEORY

Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n).
This is written a b mod n. For example, 73 4 mod 23 and 21 -9 mod 10. Note
that if a 0 mod n, then n a.

The modulo operator has the following properties:

1. a b mod n if n (a - b).
2. (a mod n) = (b mod n) implies a b mod n.
3. a b mod n implies b a mod n.
4. a b mod n and b c mod n imply a c mod n.

To demonstrate the first point, if n (a - b), then (a - b) = kn for some k. So we can
write a = b + kn. Therefore, (a mod n) = (remainder when b + kn is divided by n) =
(remainder when b is divided by n) = (b mod n). The remaining points are as easily
proved.

The (mod n) operator maps all integers into the set of integers {0, 1, ,
(n - 1)}. This suggests the question: Can we perform arithmetic operations within
the confines of this set? It turns out that we can; the technique is known as modular
arithmetic.

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n
2. [(a mod n) - (b mod n)] mod n = (a - b) mod n
3. [(a mod n) × (b mod n)] mod n = (a × b) mod n

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb.
Then we can write a = ra + jn for some integer j and b = rb + kn for some integer k.
Then

(a + b) mod n = (ra + jn + rb + kn) mod n

= (ra + rb + (k + j)n) mod n

= (ra + rb) mod n

= [(a mod n) + (b mod n)] mod n

The remaining properties are as easily proved.

Á

ƒ

KKK
KK

K
ƒK

ƒK
KKK

APPENDIX B

PROJECTS FOR TEACHING NETWORK SECURITY
B.1 Research Projects

B.2 Hacking Project

B.3 Programming Projects

B.4 Laboratory Exercises

B.5 Practical Security Assessments

B.6 Writing Assignments

B.7 Reading/Report Assignments

403

404 APPENDIX B / PROJECTS FOR TEACHING NETWORK SECURITY

Analysis and observation, theory and experience must never disdain or exclude each other; on the
contrary, they support each other.

—On War, Carl Von Clausewitz

Many instructors believe that research or implementation projects are crucial to
the clear understanding of network security.Without projects, it may be difficult for
students to grasp some of the basic concepts and interactions among components.
Projects reinforce the concepts introduced in the book, give the student a greater
appreciation of how a cryptographic algorithm or protocol works, and can motivate
students and give them confidence that they are capable of not only understanding
but implementing the details of a security capability.

In this text, I have tried to present the concepts of network security as clear-
ly as possible and have provided numerous homework problems to reinforce
those concepts. However, many instructors will wish to supplement this material
with projects. This appendix provides some guidance in that regard and describes
support material available in the Instructor’s Resource Center (IRC) for this
book, accessible to instructors from Prentice Hall. The support material covers
seven types of projects:

1. Research projects
2. Hacking project
3. Programming projects
4. Laboratory exercises
5. Practical security assessments
6. Writing assignments
7. Reading/report assignments

B.1 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could involve
a literature search as well as an Internet search of vendor products, research lab
activities, and standardization efforts. Projects could be assigned to teams or, for
smaller projects, to individuals. In any case, it is best to require some sort of project
proposal early in the term, giving the instructor time to evaluate the proposal for
appropriate topic and appropriate level of effort. Student handouts for research
projects should include

• A format for the proposal
• A format for the final report
• A schedule with intermediate and final deadlines
• A list of possible project topics

The students can select one of the topics listed in the instructor’s manual or
devise their own comparable project. The IRC includes a suggested format for the
proposal and final report as well as a list of fifteen possible research topics.

B.3 / PROGRAMMING PROJECTS 405

B.2 HACKING PROJECT

The aim of this project is to hack into a corporation’s network through a series of
steps. The Corporation is named Extreme In Security Corporation. As the name
indicates, the corporation has some security holes in it, and a clever hacker is able to
access critical information by hacking into its network. The IRC includes what is
needed to set up the Web site.The student’s goal is to capture the secret information
about the price on the quote the corporation is placing next week to obtain a
contract for a governmental project.

The student should start at the Web site and find his or her way into the network.
At each step, if the student succeeds, there are indications as to how to proceed on to
the next step as well as the grade until that point.

The project can be attempted in three ways:

1. Without seeking any sort of help.
2. Using some provided hints.
3. Using exact directions.

The IRC includes the files needed for this project:

1. Web Security project.
2. Web Hacking exercises (XSS and Script-attacks) covering client-side and server-

side vulnerability exploitations, respectively.
3. Documentation for installation and use for the above.
4. A PowerPoint file describing Web hacking.This file is crucial to understanding

how to use the exercises since it clearly explains the operation using screen
shots.

This project was designed and implemented by Professor Sreekanth Malladi
of Dakota State University.

B.3 PROGRAMMING PROJECTS

The programming project is a useful pedagogical tool. There are several attractive
features of stand-alone programming projects that are not part of an existing security
facility.

1. The instructor can choose from a wide variety of cryptography and network
security concepts to assign projects.

2. The projects can be programmed by the students on any available computer
and in any appropriate language; they are platform and language independent.

3. The instructor need not download, install, and configure any particular infra-
structure for stand-alone projects.

There is also flexibility in the size of projects. Larger projects give students more
a sense of achievement, but students with less ability or fewer organizational skills can
be left behind. Larger projects usually elicit more overall effort from the best students.
Smaller projects can have a higher concepts-to-code ratio, and because more of them
can be assigned, the opportunity exists to address a variety of different areas.

406 APPENDIX B / PROJECTS FOR TEACHING NETWORK SECURITY

Again, as with research projects, the students should first submit a proposal.
The student handout should include the same elements listed in Section A.1. The
IRC includes a set of twelve possible programming projects.

The following individuals have supplied the research and programming projects
suggested in the instructor’s manual: Henning Schulzrinne of Columbia University;
Cetin Kaya Koc of Oregon State University; and David M. Balenson of Trusted Infor-
mation Systems and George Washington University.

B.4 LABORATORY EXERCISES

Professor Sanjay Rao and Ruben Torres of Purdue University have prepared a set of
laboratory exercises that are part of the IRC. These are implementation projects
designed to be programmed on Linux but could be adapted for any Unix environment.
These laboratory exercises provide realistic experience in implementing security func-
tions and applications.

B.5 PRACTICAL SECURITY ASSESSMENTS

Examining the current infrastructure and practices of an existing organization is one
of the best ways of developing skills in assessing its security posture. The IRC
contains a list of such activities. Students, working either individually or in small
groups, select a suitable small-to-medium-sized organization. They then interview
some key personnel in that organization in order to conduct a suitable selection of
security risk assessment and review tasks as it relates to the organization’s IT infra-
structure and practices.As a result, they can then recommend suitable changes, which
can improve the organization’s IT security. These activities help students develop an
appreciation of current security practices and the skills needed to review these and
recommend changes.

Lawrie Brown of the Australian Defence Force Academy developed these
projects.

B.6 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process
in a technical discipline such as cryptography and network security. Adherents of
the Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu/)
report substantial benefits of writing assignments in facilitating learning.
Writing assignments lead to more detailed and complete thinking about a particu-
lar topic. In addition, writing assignments help to overcome the tendency of stu-
dents to pursue a subject with a minimum of personal engagement—just learning
facts and problem-solving techniques without obtaining a deep understanding of
the subject matter.

The IRC contains a number of suggested writing assignments, organized by
chapter. Instructors may ultimately find that this is an important part of their
approach to teaching the material. I would greatly appreciate any feedback on this
area and any suggestions for additional writing assignments.

B.7 / READING/REPORT ASSIGNMENTS 407

B.7 READING/REPORT ASSIGNMENTS

Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers, one or two per chapter, to be assigned.
The IRC provides a PDF copy of each of the papers. The IRC also includes a sug-
gested assignment wording.

408

A
Access, 16, 21

control, 16
threats, 22

Access control, 15
defined, 16

Access point (AP), IEEE 802.11, 180, 182
Active attacks, security, 11–14
Add Round Key, AES, 40
AES, see Advanced Encryption Standard (AES)
Alert codes, TLS, 158–159
Algorithms, 28, 34–41, 83–90, 211–214,

249–251, 283
cryptographic, 211–214, 249–251
ESP, 283
S/MIME, 249–251
WTLS, 211–214

Advanced Encryption Standard (AES), 34, 38–41
Add Round Key, 40
algorithm, 38–41
Data Encryption (DEA), 35
Data Encryption Standard (DES), 34–38
decryption, defined, 29
Diffie-Hellman key exchange, 85–89
Digital Signature (DSA), 89
elliptic curve cryptography (ECC), 89–90
encryption, 28
mix columns, 40
public-key cryptography, 83–90
RSA public-key encryption, 83–85
shift rows, 40
state array, 38
structure, 39
subkey generation, 34
substitution bytes, 40
symmetric block encryption, 34–41
triple Data Encryption Standard (3DES),

36–38
Anti-replay service, ESP, 284
Architecture, 9

open systems interconnection (OSI), 9
Attacks, 10–14, 32–33, 90–91, 114. See also

Security attacks; Threats; Cryptanalysis
active, 12
chosen plaintext, 31
ciphertext only, 30–31
denial-of-service (DoS), 16

known plaintext, 30–31
man-in-the-middle, 88–89
messages, types of for, 31
passive, 10–11
password, 112
security, 10–14

Authentication, 14–15, 63–98, 99–140, 154–156,
187, 190–192, 213–214, 226–228, 235–236, 292,
297–298. See also Message authentication;
Message authentication codes (MAC)

applications, 97–138
client/server exchange, 113
data origin, 15, 18
dialogues, 100–106, 112–114
forwarding, 111
IEEE 802.11i phase, 185, 188–190
IKE key determination, 295–296
Internet Protocol (IP), 290
interrealm, 111
Kerberos, 99–114
key exchange client and server,

SSL, 152–154
message, 61–96, 233–234
peer entity, 15
pretty good privacy (PGP), 224–227,

233–234
public-key infrastructure (PKI), 124–126
recommended reading and Web sites,

132–133
server (AS), 101
service exchange, 112–113
timestamp, 233–234
WTLS, 211–212
X.509 service, 116–124

Authority key identifier, 123

B
Base-64 (radix-64) transfer encoding, 247
Basic service set (BSS), IEEE 802.11, 179–180
Block ciphers, 30, 34, 45, 50–53

cipher block chaining (CBC) mode, 50, 51
cipher feedback (CFB) mode, 52–53
defined, 45
design of, 34
electronic codebook (ECB), 50
modes of operation, 54
plaintext processing, cryptography, 30

Index

INDEX 409

C
Canonical form, MIME and S/MIME, 247
Certificates, 114–115, 116–118, 125, 152–154,

159–160, 254–257
certification authority (CA), 114, 116, 255
enhanced security services, 257
extensions, 118
forward, 120
issuer, 117, 118, 123–124
key information, 122
path constraints, 124
period of validity, 117
PKI certification, 126
policy information, 122
policy mappings, 123
public-key, 114–115, 116
reverse, 120
revocation list (CRL), 122, 254
revocation of, 121–122
serial number, 117
signature, 118
signature algorithm identifier, 117
S/MIME, 254–257
SSL messages for key exchange, 152–154
subject, 117, 123–124
TLS client types, 159–160
unique identifiers, 118
user, 255
user’s, obtaining, 118–121
VeriSign, 255–257
version, 117
X.507, 116–118

Certificates-only message, S/MIME, 254
Certification authority (CA), 114, 116, 124–125

key distribution, 114
public-key infrastructure (PKI), 125–126
SET, 244
VeriSign certificates, 163
X.509 certificates, 116

Change Cipher Spec Protocol, 143, 147–148, 154,
207–208

Channels, SSH, 169–170
Cipher block chaining (CBC) mode, 46–47
Cipher feedback (CFB) mode, 52–53
Cipher suites, TLS, 159
Ciphertext, 29, 81
Clear signing, S/MIME, 253–254
Client/server authentication exchange, 113
Code, 64–65

message authentication (MAC), 64–65

Codebook, 50
defined, 50
electronic (ECB), 50

Compression, 227–228
PGP, 227–228
SSL, 145

Computer security, defined, 2
Confidentiality, 15–16, 27–60, 227–229, 285, 292.

See also Encryption
data, 15, 16
Internet Protocol (IP), 283, 290
messages, 27–58
pretty good privacy (PGP), 225–227
traffic flow (TFC), 283

Connection, SSL, 143
Connection Protocol, SSH, 163, 168–172
Cookie exchange, 294–295
CRL issuer, PKI, 125
Cross-certification, PKI, 126
Cryptanalysis, 30–32
Cryptography, 32, 81–84, 85–92. See also

Public-key cryptography
algorithms, 83–90
classification of systems, 30
cryptosystems, applications for, 79–82
encryption structure, 79–81
public-key, 79–82, 83–90
requirements for, 82

Cryptographic computations, 154–155, 160

D
Data, 15, 16–17

confidentiality, 15, 16
integrity, 16–17
origin authentication, 18

Data Encryption Standard (DES), 34–38
algorithm (DES), description of, 35
strength of, 35–36
triple (3DES), 36–38

Decryption algorithm, 29, 81
Denial-of-service (DoS) attack, 16

defined, 11
DES, see Data Encryption Standard (DES)
Diffie-Hellman key exchange, 85–89, 151, 155

anonymous, 151
algorithm, 86–88
ephemeral, 151
fixed, 151
introduction to, 85–86
man-in-the-middle attack, 88–89

Diffie-Hellman key exchange (Continued)
protocols, 88
SSL Handshake Protocol, 151, 155

Digital Signature Algorithm (DSA), 89
Digital Signature Standard (DSS), 89
Digital signatures, 90
Discovery phase, IEEE 802.11i, 185–188
Distribution system (DS), IEEE 802.11, 180–182
DomainKeys Identified Mail (DKIM), 257–264

e-mail threats, 259–261
functional flow, 261–264
Internet mail architecture, 258–259

DoS, see Denial-of-service (DoS) attack
Double encryption, 111

E
ECC, see Elliptic curve cryptography (ECC)
Electronic codebook (ECB), 50
Electronic data interchange (EDI), 123
Electronic mail security, 221–268

DomainKeys Identified Mail (DKIM), 257–264
pretty good privacy (PGP), 222–241
radix-64 conversion, 266–268
Secure/Multipurpose Internet Mail Extension

(S/MIME), 222, 241–257
Elliptic curve cryptography (ECC), 89–90
Encapsulating security payload (ESP), 281–288

algorithms, 283
anti-replay service, 284
format, 282–283
padding, 283
transport mode, 285–287
tunnel mode, 285–288

Encryption, 27–60, 64–65, 81–83, 85–87, 92–94,
113, 114. See also Block ciphers; Public-key
cryptography; Stream ciphers

Advanced Encryption Standard (AES), 34,
38–41

algorithms, 28, 34–41, 50, 80, 83–90
block ciphers, 30, 45, 50–53
ciphertext, 81
cryptanalysis, 30–32
cryptography, 30
Data Encryption Standard (DES), 34–38
decryption algorithms, 81
digital signatures, 90
double, 111
end-to-end, 98
Feistel cipher structure, 32–34
introduction to, 28
key distribution, 98–99

key distribution, 114–116
message authentication and, 62–66
National Institute of Standards and

Technology (NIST), 34
plaintext, 28, 30–31, 80
propagating cipher block chaining

(PCBC), 112
public-key, 79–81, 90–92
RC4 algorithm, 45–49, 50
recommended reading and Web sites, 55
RSA algorithm, 83–85
stream cipher, 30, 45–48, 52
symmetric, 28–34
symmetric block algorithms, 34–41
system dependence, 111
triple Data Encryption Standard (3DES),

36–38
End entity, PKI, 124
End-to-end encryption, 98, 214–217
EnvelopedData, S/MIME, 252–253
ESP, see Encapsulated Security Payload (ESP)
Exchanges, 114–115, 117. See also Key exchange

authentication service, 111–112
client/server authentication, 113
Kerberos, 112–113, 114
ticket-granting service, 113

Extended service set (ESS), IEEE 802.11, 180
External Functionality Interface (EFI),WAP, 201

F
Feistel cipher structure, 32–34
Fortezza key exchange, 151–153, 159
Forward certificate, 120
Fragmentation, SSL, 145

G
Group master key (PMK), IEEE 802.11i,

192–193

H
Handshake Protocol, 143, 149–154, 209–211
Hash functions, 65–66, 67–73

HMAC, 73–76
one-way, 65–66
requirements, 66–67
secure, 67–73
Secure Hash Algorithm (SHA), 70
SHA-1 secure functions, 70–73
simple, 68–70
strong collision resistance, 67
weak collision resistance, 67

410 INDEX

INDEX 411

HMAC, 73–76
algorithm, 74–76
design objectives, 74

Host keys, SSH, 163
HTTPS, 140, 160–162

I
IEEE 802.11 LAN, 177–182

association-related services, 182
message distribution, 181–182
network components, 179–180
protocol architecture, 178–179

IEEE 802.11i LAN, 183–197
authentication phase, 185, 188–190
characteristics of, 183
connection termination, 186
discovery phase, 185–188
key management phase, 186, 188–192
phases of operation, 184–186
protected data transfer phase, 186, 194–195
pseudorandom function (PRF), 195–197
Robust Security Network (RSN), 183–184
services, 183–184

Independent basic service set (IBSS), IEEE
802.11, 180

Information, 2, 20
access threats, 20
security, 2

Initialization, 125
PKI, 126

International Telecommunication
Union (ITU), 8

Internet Architecture Board (IAB), 270–271
Internet Engineering Task Force (IETF), 21

standards from, 21
Internet key exchange (IKE), 292–300

cookies, 294–295
header and payload formats, 297–300
IKEv5 message exchange, 296–297
key determination protocol, 293–300

Internet Protocol (IP), 113, 143–144, 271–305.
See also Internet Protocol security (IPSec)

authentication plus confidentiality, 290
combining security associations (SA), 288–292
cryptographic suites, 301–302
dependence, 111
encapsulating security payload (ESP),

281–288
Internet key exchange (IKE), 292–300
security (IPsec), 270–276
security association database (SAD), 276–278

security policy database (SPD), 276, 278–279
traffic processing, 279–281

Internet Protocol security (IPsec), 270–279
documents, 273–274
packets, 279–281
policy, 276–279
routing, 273
transport mode, 274–276
tunnel mode, 274–276

Internet security, 221–304
defined, 2
electronic mail, 221–304
Internet protocol (IP), 142, 269–303
Transport Layer Security (TLS), 140, 142
transport-level, 139–174

Internet Security Association and Key
Management Protocol (ISAKMP), 293

Internet standards, 21
Internet Architecture Board (IAB), 21
Internet Engineering Task Force (IETF), 21
RFCs, 21

Interrealm authentication, 111
IP, see Internet Protocol (IP)
ISAKMP, see Internet Security and Key

management Protocol (ISAKMP)
ITU-T Recommendation X.800, see X.800

standard recommendations

K
Kerberos, 99–114

authentication dialogues, 100–108, 112–114
authentication forwarding, 111
authentication server (AS), 100
authentication service exchange, 112–113
client/server authentication exchange, 113
differences between versions 4 and 5, 110–111
double encryption, 111
encryption system dependence, 111
environmental shortcomings, 111
Internet protocol dependence, 111
interrealm authentication, 111
introduction to, 99–100
message byte ordering, 111
nonce, 112
options, 112
password attacks, 112
principal, 108
propagating cipher block chaining (PCBC)

encryption, 112
realms, 108–112, 113
session keys, 112

Kerberos (Continued)
technical deficiencies of, 110–111
ticket-granting server (TGS), 102–103
ticket-granting service exchange, 113
ticket lifetime, 111
times, 112
version 4, 100–110
version 5, 110–114

Key distribution, 100–111, 116–118, 188,
192–196, 232–243. See also Exchanges;
Private keys; Public keys

center (KDC), 99
certificate authority (CA), 114
hierarchy, 191
IEEE 802.11i management phase, 186,

190–194
key identifiers, 230–233
key rings, 233–236
permanent key, 99
pretty good privacy (PGP), 230–241
private key, 233–234
public key, 234–241
public-key certificates, 114–115
public-key distribution of secret keys, 115
session key, 99, 230–233
wireless network security, 190–194

Keyed hash function, see Message
authentication codes (MAC)

Key exchange, 85–89, 151–154, 165–166,
212–213, 292–300

certificate messages for, 152–154
client authentication and, 153–154
Diffie-Hellman, 85–89, 151, 212–213
Fortezza, 151–153
Internet (IKE) key determination protocol,

293–300
Internet, 292–300
protocols, 88
RSA, 151, 212–213
server authentication and, 152–153
SSH Transport Layer Protocol, 165–166
SSL Handshake Protocol, 151–154
WTLS, 212–213

Key generation, 167, 213–214, 230
PGP, 230
SSH, 167
WTLS, 213–214

Key identifiers (key ID), PGP, 230–233
Key management, see Key distribution
Key pair recovery, PKI, 126
Key pair update, PKI, 126

Key rings, PGP, 233–236
Key schedule algorithm, DES, 94
Keystream, defined, 45

L
Link encryption, 98
Logical link control (LLC) layer, IEEE 800, 179

M
MAC protocol data unit (MPDU), IEEE 800,

178–179, 181, 187–188, 189–190
MAC service data unit (MSDU), IEEE 800,

178–179, 181
Man-in-the-middle attack, 88–89
Master key, 213–214
Master secret creation, 155, 160
Master session key (MSK), IEEE 802.11i, 190
Masquerade, 11–12
Media access control (MAC) layer, IEEE 800,

178–179
Message authentication, 61–96

approaches to, 62–66
code (MAC), 64–65
digital signatures, 90
encryption, and, 62–66
hash functions, 65–66, 67–73
introduction to, 62
key distribution, 114–146
one-way hash functions, 65–66
public-key cryptography, 79–82, 83–90
recommended reading and Web sites, 90–91
secure hash functions, 67–73

Message authentication code (MAC), 64–65, 156
SSL, 145–147
technique, 64–65
TLS, 156

Messages, 10, 11, 13–14, 27–60, 63–98, 113,
169–170, 232–238, 253–256, 298–299. See
also Encryption; Public-key cryptography

attacks on, types of, 31
authentication, 61–96
byte ordering, 111
confidentiality of, 27–58
IKEv5 exchange, 296–297
key rings for, 230–236
modification of, 13–14
pretty good privacy (PGP), 230–236
release of contents, 10, 11
Secure/Multipurpose Internet Mail Extension

(S/MIME), 251–254
SSH exchange, 167–168

412 INDEX

INDEX 413

MIME, see Multipurpose Internet Mail
Extensions (MIME)

Mix columns, AES, 40
Model for network security, 19–21
Modification of messages, 11, 13
Multipurpose Internet Mail Extensions

(MIME), 242–247
canonical form, 247
content types, 244–246
transfer encodings, 246–247

N
National Institute of Standards and Technology

(NIST), 34, 89
Network security, 1–25, 97–98, 97–138, 139–174,

175–220
applications, 97
authentication, 97–138
computer security, 2
defined, 2
HTTPS, 140, 160–162
information security, 2
International Telecommunication Union

(ITU), 8
Internet and Web resources, 23–25
Internet Engineering Task Force (IETF), 21
internet security, 2
Internet standards, 21
introduction to, 1–25
ITU-T Recommendation X.798, 8, 14, 16–17
mechanisms, 9, 17–18
model for, 19–22
open systems interconnection (OSI)

architecture, 8–9
outline for study of, 21–22
recommended reading, 22
Secure Socket Layer (SSL), 140, 142–145
Secure Shell (SSH), 140, 162–172
services, 9, 13–16
threats, 19, 99–100
transport-level, 139–174
trends in, 7–8
USENET newsgroups, 24
violations of, 3
wireless, 175–220
X.800 standard recommendations, 9, 14, 16–17

Nonce, 112, 295
Kerberos, 112

Nonrepudiation, 14, 16
Nonsecret encryption, see Public-key

cryptography

O
Oakley Key Determination Protocol, 293
One-way function, 65–66

authentication, 65–66
hash functions, 65–66
X.507, 121–122

Open systems interconnection (OSI), 8–19
Options, Kerberos, 111

P
Packet exchange, SSH, 163–165
Packets, IPsec, 279–281
Padding, 160, 283
Pairwise master key (PMK), IEEE 802.11i,

191–192
Pairwise transient key (PTK), IEEE 802.11i,

192–193
Passive attacks, security, 9–11
Password attacks, Kerberos, 111
Peer entity authentication, 15
Permanent key, defined, 99
PGP, see Pretty Good Privacy (PGP)
Physical layer, IEEE 800, 178
PKI, see Public-key infrastructure (PKI)
Plaintext, 28, 30–31, 80

chosen, attack, 31
defined, 28
known, attack, 30–31
processing, cryptography, 30
public-key encryption, 79

Port forwarding, SSH, 170–172
Pre-shared key (PSK), IEEE 802.11i, 190
Pretty good privacy (PGP), 222–241

authentication, 224–227
compression, 227–228
confidentiality, 225–227
e-mail compatibility, 228–229
key identifiers, 230–233
key rings, 233–236
notation for, 223–224
private key, 233–234
public-key, 234–241
session key, 230–233
trust, fields for, 237–241

Private keys, 81–82, 123, 233–234
pretty good privacy (PGP), 233–234
public-key cryptography and, 81–82
ring, 233–234
usage, X.509 authentication service, 123

Propagating cipher block chaining (PCBC)
encryption, 112

Protected data transfer phase, IEEE 802.11i,
194–195

Protocol, 90, 128. See also Internet
Protocol (IP)

Diffie-Hellman, 88
key exchange, 88
PKIX management, 126

Pseudorandom function (PRF), 157–158,
195–197, 213

IEEE 802.11i, 195–197
TLS, 157–158
WTLS, 213

Public-key cryptography, 79–82, 83–90
algorithms, 83–90
applications for, 81–82
ciphertext, 81
cryptography, 79–82, 83–90
decryption algorithm, 81
Diffie-Hellman key exchange, 85–89
Digital Signature Standard (DSS), 89
elliptic curve (ECC), 89–90
encryption algorithm, 80
encryption structure, 79–81
plaintext, 80
private keys, 80, 81
public keys, 80, 81
requirements for, 82
RSA public-key encryption, 83–85
secret keys, 80, 81, 92

Public-key encryption, 79–81, 90–92
algorithm, 80
certificates, 91–92
digital signatures, 90
key management, 90–92
secret keys, distribution of, 92
structure, 79–81

Public-key infrastructure (PKI), 124–126
certification authority (CA), 124–125
CRL issuer, 124
end entity, 124
key pairs, 126
PKIX management functions, 125–126
PKIX management protocols, 126
PKIX model, 124–126
registration authority (RA), 124
repository, 124

Public keys, 81–82, 90–92, 116, 123–124,
234–241

authority key identifier, 123
certificates, 114–115, 116, 123–124
cryptography, 80, 81

defined, 81
distribution, 114–116
management, 236–241
pretty good privacy (PGP), 234–241
revoking, 241
ring, 233–236
secret keys, distribution of using, 116
subject key identifier, 123
trust, PGP fields, 237–241
usage, X.509 authentication service, 123
X.509 authentication service information,

123–124

Q
Quoted-printable transfer encoding, 247

R
Radix-64 conversion, 266–268
RC4 algorithm, 45–49, 50

generation, 49
initialization of S, 48–49
logic, 50
strength of, 49

Realm, 108–112
concept of, 108
Kerberos version 4, 108–112
Kerberos version 5, 112

Record Protocol, 143, 145–147, 206–207
Registration, PKI, 125
Registration authority (RA), PKI, 125
Release of message contents, 9, 10
Replay, 12
Replay attacks, 284
Repository, PKI, 125
Request for Comment (RFC) standards, 9, 242,

259–260
RFC 5322, S/MIME, 242
RFC 6484, e-mail threats, 259–260
security recommendations, 8

Reverse certificate, 120
Revocation, 121–122, 126

certificates, X.509 authentication service,
121–122

request, PKI, 126
RFC, see Request for Comment (RFC)

standards
Rivest-Shamir-Adleman (RSA) algorithm, 151,

155, 212–213
key exchange, 151, 155, 212–213
SSL Handshake Protocol, 151, 155
WTLS, 212–213

414 INDEX

INDEX 415

Round, 32, 34, 40–41
Add Round Key, 40
AES encryption, 40–41
function, Feistel cipher, 31, 33

Routing, IPsec, 273
RSA, 83–85

public-key encryption, 83–85
RSA algorithm, see Rivest-Shamir-Adleman

(RSA) algorithm

S
Secret keys, 28, 80, 81, 115

encryption using, 28, 81
key management, 115
public-key cryptography, 80, 81, 115
public-key distribution of, 115

Secure Hash Algorithm (SHA), 70
Secure hash functions, see Hash functions
Secure/Multipurpose Internet Mail Extension

(S/MIME), 222, 241–257
certificate processing, 255–257
clear signing, 253–254
cryptographic algorithms, 249–251
functionality, 247–2451
messages, 251–254
Multipurpose Internet Mail Extensions

(MIME), 242–247
Secure Shell (SSH), 140, 162–172

channels, 169–170
Connection Protocol, 163, 168–172
host keys, 163
key exchange and generation, 165–167
message exchange, 167–168
packet exchange, 163–165
port forwarding, 170–172
Transport Layer Protocol, 162–167
User Authentication Protocol, 163, 167–168

Secure Socket Layer (SSL), 140, 142–145
Alert Protocol, 143, 148–149
architecture, 143–144
Change Cipher Spec Protocol, 143,

147–148, 154
cryptographic computations, 154–155
Handshake Protocol, 143, 149–154
Hypertext Transfer Protocol (HTTP), 143
master secret, 155
message authentication code (MAC), 145–147
Record Protocol, 143, 145–147
session, 143–144

Security association (SA), IP, 276–278, 288–292
Security association database (SAD), 276–278

Security attacks, 9–13
active, 11–13
defined, 9
denial of service, 11
masquerade, 11–12
modification of messages, 11, 13
passive, 9–11
release of message contents, 9–10
replay, 12
traffic analysis, 10–11

Security mechanisms, 9, 16–18
services and, relationship of, 18
X.800 recommendations, 17

Security policy database (SPD), 276, 278–279
Security services, 9, 13–16

access control, 15
authentication, 14–16
availability, 16
data confidentiality, 15
data integrity, 14, 16–17
defined, 9, 13
nonrepudiation, 16

Sequence number, 114
Kerberos, 113

Service request, SSH, 167
Service threats, defined, 20
Session keys, 99, 112, 230–233

defined, 99
Kerberos, 112

Session, SSL, 143–144
Shift rows, AES, 40
SignedData, S/MIME, 253
S/MIME, see Secure/Multipurpose Internet Mail

Extension (S/MIME)
SSH, see Secure Shell (SSH)
SSL, see Secure Socket Layer (SSL)
State array, AES, 38
Stream ciphers, 30, 45–48, 52

defined, 45
design considerations, 46
keystream, 45
plaintext processing, cryptography, 30
RC4 algorithm, 45–48, 52
structure of, 45–48

Subject field, 304
Subkey, Kerberos, 113
Substitution bytes, AES, 40
Symmetric encryption, 28–34

block cipher, design of, 33–34
block size, 33
ciphertext, 29

416 INDEX

Symmetric encryption (Continued)
computationally secure, 31
cryptanalysis, 30–32
cryptography, 30
decryption algorithm, 29
encryption algorithm, 28
Feistel cipher structure, 32–34
key size, 33
plaintext, 28, 30–31
principles of, 28–34
requirements of, 29
round function, 32, 33
rounds, number of, 33
secret key, 29
subkey generation algorithm, 34

T
Threats, 10–14, 21, 101–102, 261–263. See also

Attacks
active attacks, 11–13
denial-of-service (DoS) attack, 16
disclosure, 14
masquerade, 11–12
modification of information, 13
network security, 21, 99–100
passive attack, 9–11
release of contents, 10
replay, 11
service, 20
traffic analysis, 9–11

Ticket-granting server (TGS), 102–103
Ticket-granting service exchange, 113
Ticket lifetime, 111
Times, Kerberos, 113
Timestamp authentication, 231, 233–234
TLS, see Transport Layer Security (TLS)
Traffic analysis, 10–11
Traffic flow confidentiality (TFC), 283
Traffic processing, IP, 279–281
Transport Layer Protocol, SSH, 162–167
Transport Layer Security (TLS), 140, 142, 156–160

alert codes, 158–159
certificate types (client), 159–60
cipher suites, 159
cryptographic computations, 160
message authentication code (MAC), 156
padding, 160
pseudorandom function (PRF), 156–158

Transport-level security, 139–174
HTTPS, 140, 160–162
Secure Shell (SSH), 140, 162–172

Secure Socket Layer (SSL), 140, 142–155
Transport Layer Security (TLS), 140, 142,

156–160
Web considerations, 140–142

Transport mode, IP, 274–276, 285–288
Triple Data Encryption Standard (3DES), 36–37
Trust, PGP fields, 237–241
Tunnel, SSH, 169–170
Tunnel mode, IP, 274–276, 285–288

U
USENET newsgroups, 24
User Authentication Protocol, SSH, 163,

167–168

V
VeriSign certificates, S/MIME, 255–257
Version number, TLS, 156

W
WAP, see Wireless Application Protocol (WAP)
Web security, 141–144, 162–163. See also

Internet security
Web sites, 24–25, 55, 90–191, 133

authentication applications, network
security, 133

message authentication, 90–91
network security, 23–24, 133
symmetric encryption, 56

Wi-Fi Protected Access (WPA), 176–177, 183
Wireless application environment (WAE), WAP,

201–202
Wireless Application Protocol (WAP), 176,

197–204, 214–217
architecture, 200–201
end-to-end security, 214–217
programming model, 198
protocol, 197–204, 202–204
security discovery and services, 201
wireless application environment (WAE),

201–202
wireless markup language (WML), 198–200
wireless session protocol (WSP), 203
wireless transaction protocol (WTP), 203–204

Wireless Ethernet Compatibility Alliance
(WECA), 177

Wireless markup language (WML), WAP,
198–200

Wireless network security, 175–220
IEEE 802.11 LAN, 177–82
IEEE 802.11i LAN, 183–97

INDEX 417

Robust Security Network (RSN), 183–184
Wi-Fi Protected Access (WPA),

176–177, 183
Wired Equivalent Privacy (WEP), 183
Wireless Application Protocol (WAP), 176,

197–204, 214–217
Wireless Transport Layer Security (WTLS),

176, 204–214
Wireless session protocol (WSP), WAP, 203
Wireless transaction protocol (WTP), WAP,

203–204
Wireless Transport Layer Security (WTLS), 176,

204–214
Alert Protocol, 208–209
authentication, 211–212
Change Cipher Spec Protocol, 207–208
cryptographic algorithms, 211–214
Handshake Protocol, 209–211
key exchange, 212–213
master key generation, 213–214
protocol architecture, 206–211

pseudorandom function (PRF), 213
Record Protocol, 206–207
sessions and connections, 205–206

X
X.509 certificate, 116–124

certificate revocation list (CRL), 122
certificates, 117–119
certification authority (CA), 116
forward certificate, 120
introduction to, 116
issuer attributes, 123–124
key information, 122–123
path constraints, 124
policy information, 122
reverse certificate, 120
revocation of certificates, 121–122
subject attributes, 122–123
user’s certificate, obtaining, 118–119
version 3, 122–124

X.800 standard recommendations, 8, 14, 16–17

	Cover
	Network Security Essentials: Applications and Standards (Fourth edition)
	Copyright
	Contents
	Preface
	About the Author
	Chapter 1 - Introduction
	1.1 Computer Security Concepts�������������������������������������
	1.2 The OSI Security Architecture��
	1.3 Security Attacks���������������������������
	1.4 Security Services����������������������������
	1.5 Security Mechanisms������������������������������
	1.6 A Model for Network Security���������������������������������������
	1.7 Standards��������������������
	1.8 Outline of This Book�������������������������������
	1.9 Recommended Reading������������������������������
	1.10 Internet and Web Resources��������������������������������������
	1.11 Key Terms, Review Questions, and Problems���

	PART ONE - CRYPTOGRAPHY
	Chapter 2 - Symmetric Encryption and Message Confidentiality
	2.1 Symmetric Encryption Principles��
	2.2 Symmetric Block Encryption Algorithms��
	2.3 Random and Pseudorandom Numbers��
	2.4 Stream Ciphers and RC4���������������������������������
	2.5 Cipher Block Modes of Operation��
	2.6 Recommended Reading and Web Sites��
	2.7 Key Terms, Review Questions, and Problems��

	Chapter 3 - Public-Key Cryptography and Message Authentication
	3.1 Approaches to Message Authentication���
	3.2 Secure Hash Functions��������������������������������
	3.3 Message Authentication Codes���������������������������������������
	3.4 Public-Key Cryptography Principles���
	3.5 Public-Key Cryptography Algorithms���
	3.6 Digital Signatures�����������������������������
	3.7 Recommended Reading and Web Sites��
	3.8 Key Terms, Review Questions, and Problems��

	PART TWO - NETWORK SECURITY APPLICATIONS
	Chapter 4 - Key Distribution and User Authentication
	4.1 Symmetric Key Distribution Using Symmetric Encryption��
	4.2 Kerberos�������������������
	4.3 Key Distribution Using Asymmetric Encryption���
	4.4 X.509 Certificates�����������������������������
	4.5 Public-Key Infrastructure������������������������������������
	4.6 Federated Identity Management��
	4.7 Recommended Reading and Web Sites��
	4.8 Key Terms, Review Questions, and Problems��

	Chapter 5 - Transport-Level Security
	5.1 Web Security Considerations��������������������������������������
	5.2 Secure Socket Layer and Transport Layer Security���
	5.3 Transport Layer Security�����������������������������������
	5.4 HTTPS����������������
	5.5 Secure Shell (SSH)�����������������������������
	5.6 Recommended Reading and Web Sites��
	5.7 Key Terms, Review Questions, and Problems��

	Chapter 6 - Wireless Network Security
	6.1 IEEE 802.11 Wireless LAN Overview��
	6.2 IEEE 802.11i Wireless LAN Security���
	6.3 Wireless Application Protocol Overview���
	6.4 Wireless Transport Layer Security��
	6.5 WAP End-to-End Security����������������������������������
	6.6 Recommended Reading and Web Sites��
	6.7 Key Terms, Review Questions, and Problems��

	Chapter 7 - Electronic Mail Security
	7.1 Pretty Good Privacy������������������������������
	7.2 S/MIME�����������������
	7.3 DomainKeys Identified Mail�������������������������������������
	7.4 Recommended Reading and Web Sites��
	7.5 Key Terms, Review Questions, and Problems��
	Appendix 7A Radix-64 Conversion��������������������������������������

	Chapter 8 - IP Security
	8.1 IP Security Overview�������������������������������
	8.2 IP Security Policy�����������������������������
	8.3 Encapsulating Security Payload���
	8.4 Combining Security Associations��
	8.5 Internet Key Exchange��������������������������������
	8.6 Cryptographic Suites�������������������������������
	8.7 Recommended Reading and Web Sites��
	8.8 Key Terms, Review Questions, and Problems��

	PART THREE - SYSTEM SECURITY
	Chapter 9 - Intruders
	9.1 Intruders��������������������
	9.2 Intrusion Detection������������������������������
	9.3 Password Management������������������������������
	9.4 Recommended Reading and Web Sites��
	9.5 Key Terms, Review Questions, and Problems��
	Appendix 9A The Base-Rate Fallacy��

	Chapter 10 - Malicious Software
	10.1 Types of Malicious Software���������������������������������������
	10.2 Viruses�������������������
	10.3 Virus Countermeasures���������������������������������
	10.4 Worms�����������������
	10.5 Distributed Denial of Service Attacks���
	10.6 Recommended Reading and Web Sites���
	10.7 Key Terms, Review Questions, and Problems���

	Chapter 11 - Firewalls
	11.1 The Need for Firewalls����������������������������������
	11.2 Firewall Characteristics������������������������������������
	11.3 Types of Firewalls������������������������������
	11.4 Firewall Basing���������������������������
	11.5 Firewall Location and Configurations��
	11.6 Recommended Reading and Web Site��
	11.7 Key Terms, Review Questions, and Problems���

	Appendix A - Some Aspects of Number Theory
	A.1 Prime and Relatively Prime Numbers���
	A.2 Modular Arithmetic�����������������������������

	Appendix B - Projects for Teaching Network Security
	B.1 Research Projects����������������������������
	B.2 Hacking Project��������������������������
	B.3 Programming Projects�������������������������������
	B.4 Laboratory Exercises�������������������������������
	B.5 Practical Security Assessments���
	B.6 Writing Assignments������������������������������
	B.7 Reading/Report Assignments�������������������������������������

	Index������������

