

Chapter 10

[331]

6. Enter the port number as 30804, select Type as meterpreter, and then click
on Start Listener.

7. Now, send the file to the victim. As soon as the victim executes the file, we will
get access to the system. The file looks similar to the following screenshot:

An important point to note here is that while creating a listener,
there will be no notification that the listener has started.
However, it will automatically handle all the incoming requests
and will change the system's icon as soon as it marks successful
execution of the payload at the victim's end.

Visualizing with Armitage

[332]

We can now perform all the post-exploitation features at the target host by following
exactly the same steps as we did in the previous section. Let's see what files are
available at the target host by selecting the Meterpreter submenu and choosing
Browse Files from the Explore submenu, as shown in the following screenshot:

Also, let's see which processes are running at the target host by selecting the
Meterpreter submenu and choosing Show Processes from the Explore submenu.
The following screenshot shows the processes running on the target host:

Chapter 10

[333]

This concludes our discussion on client-side exploitation. Let's now get our hands
dirty and start scripting Armitage with Cortana scripts.

Scripting Armitage
Cortana is the scripting language that is used to create attack vectors in Armitage.
Penetration testers use Cortana for red teaming and virtually cloning attack vectors
so that they act like bots. However, a red team is an independent group that
challenges an organization to improve its effectiveness and security.

Cortana uses Metasploit's remote procedure client by making use of a scripting
language. It provides flexibility in controlling Metasploit operations and managing
the database automatically.

In addition, Cortana scripts automate the responses of the penetration tester when a
particular event occurs. Suppose we are performing a penetration test on a network
of 100 systems where 29 systems run on Windows XP and others run on the Linux
operating system, and we need a mechanism that will automatically exploit every
Windows XP system with the ms08_067_netapi exploit as soon as they appear on
the network with their port 445 open.

We can easily develop a simple script that will automate this entire task and save us
a great deal of time. A script to automate this task will exploit each system as soon as
they appear on the network with the ms08_067_netapi exploit, and it will perform
predesignated post-exploitation functions over them too.

The fundamentals of Cortana
Scripting a basic attack with Cortana will help us understand Cortana with a much
wider approach. So, let's see an example script that automates the exploitation on
port 445 for a Windows operating system:

on service_add_445 {
 println("Hacking a Host running $1 (" . host_os($1) . ")");
 if (host_os($1) eq "Microsoft Windows") {
 exploit("windows/smb/ms08_067_netapi", $1);
 }

}

The preceding script will find a match of the victim's OS to Microsoft Windows if it
finds a host with port 445 open. However, when a successful match is made, Cortana
will automatically attack the host with the ms08_067_netapi exploit on port 445.

Visualizing with Armitage

[334]

In the preceding script, $1 specifies the IP address of the host, print_ln prints out
strings and variables, host_os is a function in Cortana that returns the operating
system of the host, the exploit function launches an exploit module at the address
specified by the $1 parameter, and service_add_445 is an event that is to be
triggered when port 445 is found open on a particular client.

Let's save the preceding script and load this script into Armitage by navigating to the
Armitage tab and clicking on Scripts:

In order to run the script against a target, perform the following steps:

1. Click on Load to load a Cortana script into Armitage as follows:

Chapter 10

[335]

2. Select the script and click on Open. The action will load the script into
Armitage forever as follows:

3. Next, move onto the Cortana console and type the help command to list the
various options that Cortana can make use of while dealing with scripts.

4. Next, to see the various operations that are performed when a Cortana script
runs, we will use the logon command followed by the name of the script.
The logon command will provide logging features to a script and will log
every operation performed by the script.

5. Let's now perform an intense scan over the network and see what
information we get as shown in the following screenshot:

Visualizing with Armitage

[336]

6. As we can clearly see, we found a host with port 445 open. Let's move back
onto our Cortana console and see whether or not some activity has occurred
as shown in the following screenshot:

7. Bang! Cortana has already taken over the host by launching the exploit
automatically on the target host.

As we can clearly see, Cortana made penetration testing very easy for us by performing
the operations automatically. In the next few sections, we will see how we can automate
post-exploitation and handle further operations of Metasploit with Cortana.

Controlling Metasploit
Cortana controls Metasploit functions very well. We can send any command for
Metasploit using Cortana. Let's see an example script to help us to understand more
about controlling Metasploit functions from Cortana:

cmd_async("db_status");
cmd_async("hosts");
on console_db_status {
println(" $3 ");
}
on console_hosts {
println("Hosts in The Database");
println(" $3 ");
}

Chapter 10

[337]

In the preceding script, the cmd_async command sends the command to Metasploit
and ensures that it is executed. In addition, the console_* functions are used
to print the output of that command. As we can see, we used two commands in
the preceding script: the db_status and hosts commands by using cmd_async.
Metasploit will execute these commands; however, for printing the output, we need
to define the console_* function. In addition, $3 is the variable that holds the output
of the commands.

Let's see what happens when we load this script into Armitage:

As soon as we load the ready.cna script, let's open the Cortana console to view
the output:

Clearly, the output of the commands shows up on the screen, which concludes our
current discussion. However, more information on Cortana scripts and controlling
Metasploit through Armitage can be viewed at http://www.fastandeasyhacking.
com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage

[338]

Post-exploitation with Cortana
Post-exploitation with Cortana is also simple. Cortana's built-in functions can make
post-exploitation easy to tackle. Let's understand this with the help of the following
example script:

on heartbeat_15s {
local('$sid');
foreach $sid (session_ids()) {
if (-iswinmeterpreter $sid && -isready $sid) {
m_cmd($sid, "getuid");
on meterpreter_getuid {
println(" $3 ");
}
}
}
}

In the preceding script, we used a function named heartbeat_15s. This function
repeats its execution every 15 seconds. Hence, it is called a heart beat function. The
local function will denote that $sid is local to the current function and its value
will disappear when the function returns. The next statement is a loop that toggles
within every open session: the if statement will check to see if the session type is a
Windows meterpreter type and whether it is ready to interact. The m_cmd function
sends the command to the meterpreter session with parameters such as $sid that is
session ID and the command. Next, we define a function with meterpreter_* where
* denotes the command sent to the meterpreter session. This function will print the
output of the sent command, as we did in the previous exercise for console_hosts.

Let's run this script along with the very first script that we used to automate the
ms08_067_netapi exploit:

As soon as we load the script and perform an Nmap Scan on the target, if Nmap
finds the port 445 open on the target host, our first script auto.cna will exploit it.
Now, as soon as the Armitage gets a meterpreter shell on the target, our second
script heart.cna executes. This script will display the UID of the target after every
15 seconds, as shown in the following screenshot:

Chapter 10

[339]

For further information about post-exploitation, scripts, and
functions, refer to http://www.fastandeasyhacking.
com/download/cortana/cortana_tutorial.pdf.

Building a custom menu in Cortana
Cortana also delivers exceptional output when it comes to building custom pop-up
menus that attach to a host after getting the meterpreter session and others as well.
Let's build a Custom Key logger with Cortana and understand its working with a
Cortana script:

popup meterpreter_bottom {
menu "&My Key Logger" {
item "&Start Key Logger" {
m_cmd($1, "keyscan_start");
}
item "&Stop Key Logger" {
m_cmd($1, "keyscan_stop");
}
item "&Show Keylogs" {
m_cmd($1, "keyscan_dump");
}
on meterpreter_keyscan_start {
println(" $3 ");
}
on meterpreter_keyscan_stop {
println(" $3 ");
}
on meterpreter_keyscan_dump {
println(" $3 ");
}
}
}

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage

[340]

The preceding example shows the creation of a pop up in the Meterpreter submenu.
However, this pop up will only be available if we are able to exploit the target host
and get a meterpreter shell successfully.

The popup keyword will denote the creation of a pop up. The meterpreter_bottom
function will denote that whenever a user right-clicks on an exploited host and
chooses the Meterpreter option, Armitage will display this menu at the bottom.
The item keyword specifies various items in the menu. The m_cmd command is the
command that will actually send the meterpreter commands to Metasploit with their
respective session IDs.

Therefore, in the preceding script, we have three items: Start Key Logger, Stop Key
Logger, and Show Keylogs. They are used to start key logging, stop key logging,
and display the data that is present in the logs, respectively. We have also declared
three functions that will handle the output of the commands sent to the meterpreter.
Let's now load this script into Cortana, exploit the host, and right-click on the
compromised host which will present us with the following menu:

We can see that whenever we right-click on an exploited host and browse to the
Meterpreter menu, we will see a new menu named My Key Logger listed at the
bottom of all the menus. This menu will contain all the items that we declared in the
script. Whenever we select an option from this menu, the corresponding command
runs and displays its output on the Cortana console as follows:

Chapter 10

[341]

Whenever we select the first option, that is, Start Key Logger, we will be able to see
the output in the Cortana console. Let's now wait for a short time to check whether
the person working on the exploited host has typed in anything. After a short delay
of a few seconds, let's now click on the third option, Show Keylogs, from the menu
and analyze the output as follows:

After we click on the Show Keylogs option, we will see the characters typed by the
person working on the compromised host in the Cortana console. This concludes our
discussion on building menus using Cortana.

Visualizing with Armitage

[342]

Working with interfaces
Cortana also provides a flexible approach while working with interfaces. Cortana
provides options and functions to create shortcuts, tables, switching tabs, and so on.
Suppose, we may want to add a custom functionality such as whenever we press F1
from the keyboard, Cortana should display the UID of the target host. Let's see an
example of a script that will enable us to achieve this feature:

bind F1 {
local('$sid');
$sid ="1";
spawn(&gu, \$sid);
}
sub gu{
m_cmd($sid,"getuid");
on meterpreter_getuid {
show_message(" $3 ");
}
}

The preceding script will add a shortcut key F1 that will display the UID of the
target system when pressed. The bind keyword in the script denotes binding of
functionality with the F1 key. Next, we define the scope of the $sid variable and
assign a value of 1 to it (this is the value of the session ID with which we'll interact).

The spawn keyword will create a new instance of Cortana, execute the gu function,
and pass the value of $sid as a global variable to the function as well. The gu function
will send the getuid command to the meterpreter. The meterpreter_getuid
command will handle the output of the getuid command.

The show_message command will pop up a message displaying the output from the
getuid command. Let's now load the script into Armitage and see if it works correctly:

Chapter 10

[343]

Next, let's perform an intense scan over the target host and exploit it with the
auto.cna script. Let's now press the F1 key from the keyboard to check and see if
our current script executes well:

Bang! We got the UID of the target system easily which is NT AUTHORITY\
SYSTEM. This concludes our discussion on Cortana scripting using Armitage.

For further information about Cortana scripting and its various
functions, refer to http://www.fastandeasyhacking.com/
download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage

[344]

Summary
In this chapter, we had a good look at Armitage and its various features. We kicked
off by looking at the interface and building up workspaces. We also saw how we
could exploit a host with Armitage. We looked at remote as well as client-side
exploitation and post-exploitation. Further more, we jumped into Cortana and
learned about its fundamentals, using it to control Metasploit. We created post-
exploitation scripts, custom menus, and interfaces as well.

Further reading
In this book, we have covered Metasploit and various other related subjects in a
practical way. We covered exploit development, module development, porting
exploits, client-side attacks, SET, Armitage, speeding up penetration testing, and
testing services. We also had a look at the assembly language, Ruby programming,
and Cortana scripting.

Once you have read this book, you may find the following resources useful in
providing further details on these topics:

• For learning Ruby programming, refer to http://ruby-doc.com/docs/
ProgrammingRuby/

• For assembly programming, refer to https://courses.engr.illinois.
edu/ece390/books/artofasm/artofasm.html

• For exploit development, refer to http://www.corelan.be
• For Metasploit development, refer to http://dev.metasploit.com/

redmine/projects/framework/wiki/DeveloperGuide

• For SCADA-based exploitation, refer to http://www.scadahacker.com
• For in-depth attack documentation on Metasploit, refer to http://www.

offensive-security.com/metasploit-unleashed/Main_Page

• For more information on Cortana scripting, refer to http://www.
fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

• For Cortana script resources, refer to https://github.com/rsmudge/
cortana-scripts

http://ruby-doc.com/docs/ProgrammingRuby/
http://ruby-doc.com/docs/ProgrammingRuby/
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
http://www.corelan.be
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://www.scadahacker.com
http://www.offensive-security.com/metasploit-unleashed/Main_Page
http://www.offensive-security.com/metasploit-unleashed/Main_Page
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
https://github.com/rsmudge/cortana-scripts
https://github.com/rsmudge/cortana-scripts

Index
Symbols
-sP switch 31

A
Address Space Layout Randomization

(ASLR) 33
Application Programming Interface (API)

calls 82
architectures, elemental assembly primer

about 92
CPU 93
I/O Devices 93
Memory 93
system bus 93

Arduino-based attack vector 267
Armitage

about 22, 317
client-side attacks 328
exploitation 325, 326
fundamentals 318
networks and host management,

scanning 323
post-exploitation 327, 328
scripting, with Cortana scripts 333
starting 318, 319
user interface 320, 321
workspace, managing 321, 322

arrays, Ruby 55
assembly language 92
attacks, SET

automating 292, 293
attack vectors, SET

Arduino-based attack vector 267
Create a Payload and Listener 267

evading antivirus detection 268
Infectious Media Generator 267
Mass Mailer Attack 267
SMS Spoofing attack vector 267
Spear-Phishing 266
third-party attack vector 267
Website attack vectors 267
Wireless Access Point Attack Vector 267

automated exploitation
about 303
database, attacking 306-308
db_autopwn, re-enabling 304, 305
target, scanning 305, 306

automated tools
about 296
Armitage 296
Fast Track 296
Social Engineering Toolkit (SET) 296
WebSploit 296

AV detections
bypassing 248
bypassing, with msfencode tool 248-250
bypassing, with msfvenom tool 251-253
considerations, encoded file 253

B
basics, Metasploit

auxiliary 29
encoders 29
exploits 28
payload 29

black box penetration test
about 215
conducting, with Metasploit 219
FootPrinting 215

[346]

FootPrinting, Dmitry used 215
performing 215

black box test, with Metasploit
hidden target, exploiting 227
hidden target, scanning using proxychains

and db_nmap 223
performing 219-221
privileges, elevating 227, 228
target, pivoting to 222
Nessus, used for conducting

vulnerability 224-226
browser autopwn

about 232
performing 233
working 232

browsers exploitation
browser attacking, with browser

autopwn 233
browser attacking, with Metasploit browser

autopwn 234, 235
browser autopwn 232
browser autopwn, working 232, 233
performing 232

brute force attack 298
buffer 92
buffer overflow 92

C
Classless inter domain routing (CIDR) 179
client-based exploitation

about 231
AV detections, bypassing 248
browsers, exploiting 232
DNS spoofing attacks 254
file format-based exploitation 235
Linux attacks, with malicious

packages 261-264
XAMPP servers, compromising 243

client-side attacks, Armitage
about 328
launching 328-332

command-line interface 22
components, SCADA systems

Human Machine Interface (HMI) 158
Intelligent electronic device (IED) 158

Programmable Logic Controller (PLC) 158
Remote Terminal Unit (RTU) 158

console interface 22
Control Unit (CU) 93
Corelan team

URL 136
Cortana

about 333
custom menu, building 339-341
fundamentals 333-336
interfaces, working with 342, 343
Metasploit, controlling 336, 337
post-exploitation 338

Cortana scripting 22
CPU, elemental assembly primer

about 93
Control Unit (CU) 93
Execution Unit (EU) 93
Flags 93
Registers 93

Create a Payload and Listener
vector 267-270

CS register 94
custom FTP scanner module

writing 69-71
custom HTTP server scanner

writing 71-73
custom meterpreter scripts

fabricating 82-84
custom modules

developing 60
custom modules development

custom FTP scanner module, writing 69-71
custom HTTP server scanner, writing 71-73
existing modules, digging 64-68
libraries layout 62-64
Metasploit architecture 60
module, building in nutshell 60
post-exploitation modules, writing 73-75

D
database

used, for fetching results 43-46
used, for storing results 43-46

Data Execution Prevention (DEP) 33

[347]

debugger
about 92
GDB 92
Immunity Debugger 92
OllyDbg 92

decision-making operators, Ruby 56, 57
Denial of Service (DoS) attack 13
distributed component object model

(DCOM) 14
Dmitry

about 215
DNS enumeration, with Metasploit 218
e-mail harvesting 217, 218
subdomains, finding 217
used, for FootPrinting 215
WHOIS query, performing 215

DNS spoofing attacks
about 254
victim, tricking with DNS hijacking 254-260

Domain Name System (DNS) 215
Dradis Framework

URL 211
DS register 94
Dynamic Link Library (DLL) 82

E
EAX register 94
EBP register 94
EBX register 94
ECX register 94
EDX register 94
EIP register 94, 96
elemental assembly primer

about 91
architecture 92
basics 92
declaration 98
example assembly programs,

fabricating 98, 99
JMP 97
NOPs 97
registers 94
system organization basics 93
variables 97

environment, penetration testing
exploitation phase 17
gathering intelligence phase 13
post exploitation phase 17
preinteractions 12
reporting 17
setting up 12
threat modeling 16
vulnerability analysis 17

errors, in Linux-based installation
troubleshooting 27

errors, in Windows-based installation
troubleshooting 27

error states
errors, in Linux-based installation 27
errors, in Windows-based installation 27

ES register 94
ESI/EDI register 94
ESP register 94, 96
evading antivirus detection 268
Execution Unit (EU) 93
executive summary, penetration testing

report
assumptions made 213
objectives 213
scope 213
summary of recommendations 214
summary of vulnerabilities 214

exploitation phase, penetration testing 17
exploit base

applications, stuffing 118
buffer size, calculating 114, 115
building up 114
EIP, examining 117
ESP, examining 118, 119
JMP address, calculating 116
pragma script 118
space, stuffing 119

exploit, finalizing
automation functions 123, 124
bad characters, determining 120
example exploit code, creating 121, 122
space limitations, determining 120

exploit formulation
about 91
elemental assembly primer 91

[348]

exploit formulation, testing
application, crashing 100-104
GDB 110
Immunity Debugger 107
junk, generating 107
variable input supplies 105, 106

exploits
Perl-based exploit, porting 132
porting 131
Python-based exploit, porting 141
web-based exploits, porting 146

Extended Instruction Pointer (EIP) 42, 91
Extended Stack Pointer (ESP) 91

F
fake update

performing, with DNS-spoofing
attack 308, 309

false positives 190
fast-paced penetration testing

automated exploitation 303
conducting 295
conducting, with automated tools 296
fake update, with DNS-spoofing attack 308
Fast Track MS SQL attack vectors 296

Fast Track
about 296, 297, 303
depreciation 302
MS SQL brute force attack,

performing 298-302
SET, creating 303

features, Metasploit
cleaner exits 47
ease of use 47
GUI environment 48
open source 47
payloads, generating 47

file format-based exploitation
about 235
media-based exploits 241
PDF-based exploits 236
Word-based exploits 238

flags 93
FootPrinting 13
format string bugs 92
FS register 94

G
gathering intelligence phase, penetration

testing
about 13
covert gathering 14
examples 13, 14
FootPrinting 14
protection mechanisms, identifying 15
target selection 14
test grounds, presensing 15

GDB
about 92, 110
functions, performing 110-114

Google dorks 13
Greenbone interfaces, OpenVAS 194
GS register 94
GUI interface 22

H
heart beat function 338
hosted services, VOIP 177
Human Machine Interface (HMI) 158

I
ICS systems 158
iDevices

testing 185
Immunity Debugger

about 92, 107
process, attaching 108-110
using 136

Infectious Media Generator attack vector
about 267, 271
advantage 271
using 272-274

intelligence gathering, white box penetra-
tion test

about 192
Greenbone interfaces, OpenVAS 194-202
OpenVAS, setting up 193, 194
OpenVAS vulnerability scanner

fundamentals 192
Intelligent electronic device (IED) 158
interactive shell, Ruby

working with 50, 51

[349]

interface panel, Armitage 320, 321
internal FootPrinting

about 30
conducting 31

Internet Information Services (IIS) pawnage
tools 15

Internet Service Provider (ISP) 176
iOS

exploiting, with Metasploit 185-188

J
Java applet attack

about 275
executing 275-279

Jump (JMP) 91

L
Last In First Out (LIFO) method 92
lcc-win32 compiler 102
Linux

attacking, with malicious packages 261-264
Local Area Network (LAN) 191
loops, Ruby 58

M
MagicTree

about 209
report, creating 209-211

manual reports, penetration test
format 212
generating 211

Mass Mailer Attack 267
media-based exploits

about 241
Media Player Classic video player,

exploiting 241-243
Metasploit

about 9
configuring, on Ubuntu 24, 25
configuring, on Windows XP/7 23
custom modules, developing 60
exploit formulation 91
features 46

fundamentals 21
meterpreter scripting 76
RailGun 84
Ruby 50

Metasploit community 22
Metasploit framework

about 22
architecture 60, 61
client-based exploitation 231

Metasploit pro 22
meterpreter scripting

about 76
API calls 82
custom meterpreter scripts,

fabricating 82-84
essentials 76
mixins 82
persistent access, setting up 81, 82
target network, pivoting 76-80

methodology / network admin level report
about 214
likelihood 214
list of vulnerabilities 214
recommendations 214
test details 214

methods, Ruby 56
MS03-020 Internet Explorer Object Type

exploit 235
MSF scan 323
MS SQL brute force attack

performing 298

N
networks and host management, Armitage

match, finding 325
MSF scan 323
Nmap scan 323
scanning 323, 324
vulnerabilities, modeling out 324

Network vulnerability tests (NVTs) 193
Nmap scan 323
No operation (NOP) 91
No tech Hacking 191
numbers and conversions, Ruby 54

[350]

O
OllyDbg 92
OpenVAS

fundamentals 192
Greenbone interfaces 194
setting up 193, 194

OWASP Report Generator
URL 211

P
PBX 175
PDF-based exploits

about 236
vulnerability, exploiting 236, 237

penetration test, conducting with Metasploit
Metasploit basics, recalling 28

penetration test environment, mounting
error states, dealing with 27
Metasploit, configuring on Ubuntu 24-26
Metasploit, configuring on

Windows XP/7 23
Metasploit features 21
penetration test lab, setting up 18-21

penetration testing
about 9
conducting, Metasploit used 28
environment, mounting 18
environment, setting up 12
reports, generating 46
reports, storing 43
results, fetching 43

Penetration testing Execution Standard
(PTES)

URL 11
penetration testing, of Windows 7

exploitation 42
gathering intelligence phase 40
performing 40
post exploitation 43
threats, modelling 41
vulnerability analysis 41

penetration testing, of Windows Server 2003
performing 39

penetration testing, of Windows XP
access, maintaining 37
assumptions 30

attack procedure, with respect to NETAPI
vulnerability 33

concept of attack 33
exploitation 34
gathering intelligence 30
information gathering 31, 32
post exploitation 36
threats, modeling 32
tracks, clearing 38
vulnerability analysis 33
vulnerability, exploiting 34

penetration testing report format
about 212
cover page 213
document control 213
document properties 213
executive summary 213
glossary, additional sections 215
list of illustrations 213
list of report content 213
methodology / network admin level

report 214
page design 213
references, additional sections 215
table of content 213

penetration test lab
setting up 18

Perl-based exploit
launching 141

Perl-based exploit, porting
essentials, gathering 135
existing exploit, dismantling 133
logic 134
performing 132
ShellCode, precluding 140
skeleton, generating 135
skeleton, generating using Immunity

Debugger 136-139
values, stuffing 139, 140

persistent access, meterpreter scripting
setting up 81

PHP meterpreter 243
PHP Stream Scan Directory buffer

overflow 203
PMSoftware Simple Web Server 2.2 41
post-exploitation modules

writing 73-75

[351]

post exploitation phase, penetration
testing 17

preinteractions, penetration testing
about 12
goals 12
rules of engagement 12
scoping 12
terms and definitions 12

Private branch exchange. See PBX
Process Identifies (PID) 205
Programmable Logic Controller (PLC) 158
Public Switched Telephone Network

(PSTN) 176
Python-based exploit

launching 145
Python-based exploit, porting

essentials, gathering 142
existing exploit, dismantling 141, 142
performing 141
skeleton, generating 143
values, stuffing 143-145

R
RailGun

irb shell 84, 85
Ruby-interactive shell 84
scripting 85, 86
sophisticated scripts, fabricating 87-89
Window API calls, manipulating 86
working with 84

ranges, Ruby 55
RATTE module

about 286
using 289, 290

registers
about 92-94
EAX 94
EBP 94
EBX 94
ECX 94
EDX 94
EFLAGS 94
EIP 94
ESI/EDI 94
ESP 94
General Purpose 94

Index registers 94
Segment 94

regular expressions, Ruby 58, 59
Remote Administration tool (RAT)

servers 267
Remote Administration Tool Tommy

Edition. See RATTE module
Remote Procedure Call (RPC) 34
Remote Terminal Unit (RTU) 158
report, penetration testing

creating 17
reports

generating 46
resource scripts 274
results, penetration testing

fetching, database used 43
storing, database used 43

Ruby
about 50
basics 60
decision-making operators 56
download link for Windows/Linux 50
interactive shell, working on 50, 51
loops 58
methods 56
methods, defining in shell 51, 52
numbers and conversions 54
program, creating 50
regular expressions 58
variable 52
variables' data types 52

S
SCADA

about 158
components 158
criticality 159
database exploitation 164
exploiting 159
fundamentals 158
fundamentals of testing 159, 160
securing 163
security, breaching 159
URL 162

SCADA-based exploits 160-162
SCADA exploitation

[352]

passwords, brute forcing 167, 169
performing 164
scanning process, with Metasploit

modules 167
server passwords, locating/capturing 170
SQL-based queries, running 174
SQL server 164
SQL server, browsing 170-172
SQL server, FootPrinting with

Nmap 164-166
system commands, executing 172
system commands, post-exploiting 172
xp_cmdshell functionality, reloading 173

SCADApro system 161
SCADA security

about 163
implementing 163
networks, restricting 163

Secure Socket Layer (SSL) certificate 25
segment registers

CS 94
DS 94
ES 94
FS 94
GS 94
SS 94

SEH
about 124
bypassing 127
controlling 124, 126
fundamentals 124

SEH-based exploits
about 128
structure 129

self-hosted network, VOIP services 176
Server Message Block (SMB) 34
Session Initiation Protocol (SIP) 177
SET

about 266
attack techniques 268
attack types 266
attack vectors 266
features 291
fundamentals 266
web interface 291

SET attacks
automating 292, 293

ShellCode 34, 92
Short Messaging Service (SMS) servers 267
show_message command 342
SIP endpoint scanner 178
SIP service providers, VOIP 178
SMS Spoofing attack vector 267
social engineering 191, 265
Social Engineering Toolkit. See SET
sophisticated scripts, RailGun

fabricating 87-89
Spear-Phishing attack vectors 266
split function, Ruby 53
squeeze function, Ruby 53
SS register 94
stack 92
stealth scan 40
strings, Ruby

working with 52, 53
Structured Exception Handling. See SEH
Stuxnet bot 159
Supervisory Control and Data

Acquisition. See SCADA
SYN scan 223
system bus 93
system calls 92

T
tabnabbing attack

about 279
used, for harvesting credentials 280-283

target network, meterpreter scripting
pivoting 76-80

third-party attack vector 267-289
threat modeling, penetration testing

about 16
example 16

troubleshooting, WebSploit
file copy issue, fixing 312
path issues, fixing 311
payload generation, fixing 311
performing 311

U
Ultimate Packer for Executables (UPX) 277

[353]

V
variables data types, Ruby

arrays 55
ranges 55

variables' data types, Ruby
about 52
split function 53
squeeze function 53
strings, working with 52

variables, Ruby 52
VirtualBox 19

downloading 19
VMware player 19
Voice Over Internet Protocol (VOIP)

about 175
exploiting 183, 184
fundamentals 175
PBX 175
vulnerability 184

VOIP call
spoofing 181, 182

VOIP services
FootPrinting 178, 179
hosted services 177
scanning 180
self-hosted network 176
SIP service providers 178
types 176

vsprintf() function 42
vulnerability analysis, penetration

testing 17
vulnerability, VOIP exploitation 184

W
web-based exploits, porting

auxiliary-based exploit, fabricating 149
auxiliary-based exploit, working 150-153
essentials, gathering 147
existing exploit, dismantling 146
GET/POST method essentials 149
launching 154
performing 146
web functions, grasping 147-149

web interface, SET 291

web jacking attack
about 283
performing 283-285

Website attack vectors
about 267, 275
Java applet attack, executing 275-279
tabnabbing attack 279
web jacking attack, performing 283-285

website clients exploitation
malicious web scripts, injecting 245
performing 245
users, hacking 246, 247

WebSploit
about 309
commands 310, 311
troubleshooting 311
used, for attacking LAN 312-314

white box penetration test
access, gaining 204, 205
intelligence gathering 192
interaction, with employees 191
interaction, with end users 191
MagicTree 209
performing 189, 190
reporting services 211
suspected vulnerability prone systems,

targeting 202, 203
threat areas, modeling 202
tracks, covering 205-208

white box testing 189
WHOIS

about 215
query, performing 216

Window API calls, RailGun
manipulating 86

Wireless Access Point Attack Vector 267
Word-based exploits

about 238
vulnerability, exploiting 239, 240

X
x86 92
XAMPP servers

compromising 243
PHP meterpreter 243, 244
system-level privileges, escalating 244

Thank you for buying
Mastering Metasploit

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Metasploit Penetration Testing
Cookbook
Second Edition
ISBN: 978-1-78216-678-8 Paperback: 320 pages

Over 80 recipes to master the most widely used
penetration testing framework

1. Special focus on the latest operating systems,
exploits, and penetration testing techniques
for wireless, VOIP, and cloud.

2. This book covers a detailed analysis of third-
party tools based on the Metasploit framework
to enhance the penetration testing experience.

3. Detailed penetration testing techniques
for different specializations such as wireless
networks, VOIP systems with a brief
introduction to penetration testing in the cloud.

Learning Metasploit Exploitation
and Development
ISBN: 978-1-78216-358-9 Paperback: 294 pages

Develop advanced exploits and modules with a
fast-paced, practical learning guide to protect what's
most important to your organization, all using the
Metasploit Framework

1. Step-by-step instructions to learn exploit
development with Metasploit, along with
crucial aspects of client-side exploitation to
secure against unauthorized access and defend
vulnerabilities.

2. This book contains the latest exploits tested
on new operating systems and also covers the
concept of hacking recent network topologies.

Please check www.PacktPub.com for information on our titles

Metasploit Penetration Testing
Cookbook
ISBN: 978-1-84951-742-3 Paperback: 268 pages

Over 70 recipes to master the most widely used
penetration testing framework

1. More than 80 recipes / practical tasks that will
escalate the reader's knowledge from beginner
to an advanced level.

2. Special focus on the latest operating systems,
exploits, and penetration testing techniques.

3. Detailed analysis of third-party tools based
on the Metasploit framework to enhance the
penetration testing experience.

Instant Metasploit Starter
ISBN: 978-1-84969-448-3 Paperback: 52 pages

The art of ethical hacking made easy with Metasploit

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate results.

2. Rapidly develop and execute exploit codes
against a remote target machine.

3. Focus less on theory and more on results,
with clear, step-by-step instructions on how to
master ethical hacking, previews, and examples
to help you secure your world from hackers.

Please check www.PacktPub.com for information on our titles

