


Chapter 10

[ 331 ]

6. Enter the port number as 30804, select Type as meterpreter, and then click 
on Start Listener.

7. Now, send the file to the victim. As soon as the victim executes the file, we will 
get access to the system. The file looks similar to the following screenshot:

An important point to note here is that while creating a listener, 
there will be no notification that the listener has started. 
However, it will automatically handle all the incoming requests 
and will change the system's icon as soon as it marks successful 
execution of the payload at the victim's end.
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We can now perform all the post-exploitation features at the target host by following 
exactly the same steps as we did in the previous section. Let's see what files are 
available at the target host by selecting the Meterpreter submenu and choosing 
Browse Files from the Explore submenu, as shown in the following screenshot:

Also, let's see which processes are running at the target host by selecting the 
Meterpreter submenu and choosing Show Processes from the Explore submenu. 
The following screenshot shows the processes running on the target host:
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This concludes our discussion on client-side exploitation. Let's now get our hands 
dirty and start scripting Armitage with Cortana scripts.

Scripting Armitage
Cortana is the scripting language that is used to create attack vectors in Armitage. 
Penetration testers use Cortana for red teaming and virtually cloning attack vectors 
so that they act like bots. However, a red team is an independent group that 
challenges an organization to improve its effectiveness and security.

Cortana uses Metasploit's remote procedure client by making use of a scripting 
language. It provides flexibility in controlling Metasploit operations and managing 
the database automatically.

In addition, Cortana scripts automate the responses of the penetration tester when a 
particular event occurs. Suppose we are performing a penetration test on a network 
of 100 systems where 29 systems run on Windows XP and others run on the Linux 
operating system, and we need a mechanism that will automatically exploit every 
Windows XP system with the ms08_067_netapi exploit as soon as they appear on 
the network with their port 445 open.

We can easily develop a simple script that will automate this entire task and save us 
a great deal of time. A script to automate this task will exploit each system as soon as 
they appear on the network with the ms08_067_netapi exploit, and it will perform 
predesignated post-exploitation functions over them too.

The fundamentals of Cortana
Scripting a basic attack with Cortana will help us understand Cortana with a much 
wider approach. So, let's see an example script that automates the exploitation on 
port 445 for a Windows operating system:

on service_add_445 {
        println("Hacking a Host running $1 (" . host_os($1) . ")");
        if (host_os($1) eq "Microsoft Windows") {
                exploit("windows/smb/ms08_067_netapi", $1);
        }
      
}

The preceding script will find a match of the victim's OS to Microsoft Windows if it 
finds a host with port 445 open. However, when a successful match is made, Cortana 
will automatically attack the host with the ms08_067_netapi exploit on port 445.
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In the preceding script, $1 specifies the IP address of the host, print_ln prints out 
strings and variables, host_os is a function in Cortana that returns the operating 
system of the host, the exploit function launches an exploit module at the address 
specified by the $1 parameter, and service_add_445 is an event that is to be 
triggered when port 445 is found open on a particular client.

Let's save the preceding script and load this script into Armitage by navigating to the 
Armitage tab and clicking on Scripts:

In order to run the script against a target, perform the following steps:

1. Click on Load to load a Cortana script into Armitage as follows:
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2. Select the script and click on Open. The action will load the script into 
Armitage forever as follows:

3. Next, move onto the Cortana console and type the help command to list the 
various options that Cortana can make use of while dealing with scripts.

4. Next, to see the various operations that are performed when a Cortana script 
runs, we will use the logon command followed by the name of the script. 
The logon command will provide logging features to a script and will log 
every operation performed by the script.

5. Let's now perform an intense scan over the network and see what 
information we get as shown in the following screenshot:
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6. As we can clearly see, we found a host with port 445 open. Let's move back 
onto our Cortana console and see whether or not some activity has occurred 
as shown in the following screenshot:

7. Bang! Cortana has already taken over the host by launching the exploit 
automatically on the target host.

As we can clearly see, Cortana made penetration testing very easy for us by performing 
the operations automatically. In the next few sections, we will see how we can automate 
post-exploitation and handle further operations of Metasploit with Cortana.

Controlling Metasploit
Cortana controls Metasploit functions very well. We can send any command for 
Metasploit using Cortana. Let's see an example script to help us to understand more 
about controlling Metasploit functions from Cortana:

cmd_async("db_status");
cmd_async("hosts");
on console_db_status {
println(" $3 ");
}
on console_hosts {
println("Hosts in The Database");
println(" $3 ");
}
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In the preceding script, the cmd_async command sends the command to Metasploit 
and ensures that it is executed. In addition, the console_* functions are used 
to print the output of that command. As we can see, we used two commands in 
the preceding script: the db_status and hosts commands by using cmd_async. 
Metasploit will execute these commands; however, for printing the output, we need 
to define the console_* function. In addition, $3 is the variable that holds the output 
of the commands.

Let's see what happens when we load this script into Armitage:

As soon as we load the ready.cna script, let's open the Cortana console to view  
the output:

Clearly, the output of the commands shows up on the screen, which concludes our 
current discussion. However, more information on Cortana scripts and controlling 
Metasploit through Armitage can be viewed at http://www.fastandeasyhacking.
com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
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Post-exploitation with Cortana
Post-exploitation with Cortana is also simple. Cortana's built-in functions can make 
post-exploitation easy to tackle. Let's understand this with the help of the following 
example script:

on heartbeat_15s {
local('$sid');
foreach $sid (session_ids()) {
if (-iswinmeterpreter $sid && -isready $sid) {  
m_cmd($sid, "getuid");
on meterpreter_getuid {
println(" $3 ");
}
}
}
}

In the preceding script, we used a function named heartbeat_15s. This function 
repeats its execution every 15 seconds. Hence, it is called a heart beat function. The 
local function will denote that $sid is local to the current function and its value 
will disappear when the function returns. The next statement is a loop that toggles 
within every open session: the if statement will check to see if the session type is a 
Windows meterpreter type and whether it is ready to interact. The m_cmd function 
sends the command to the meterpreter session with parameters such as $sid that is 
session ID and the command. Next, we define a function with meterpreter_* where 
* denotes the command sent to the meterpreter session. This function will print the 
output of the sent command, as we did in the previous exercise for console_hosts.

Let's run this script along with the very first script that we used to automate the 
ms08_067_netapi exploit:

As soon as we load the script and perform an Nmap Scan on the target, if Nmap 
finds the port 445 open on the target host, our first script auto.cna will exploit it. 
Now, as soon as the Armitage gets a meterpreter shell on the target, our second 
script heart.cna executes. This script will display the UID of the target after every 
15 seconds, as shown in the following screenshot:
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For further information about post-exploitation, scripts, and 
functions, refer to http://www.fastandeasyhacking.
com/download/cortana/cortana_tutorial.pdf.

Building a custom menu in Cortana
Cortana also delivers exceptional output when it comes to building custom pop-up 
menus that attach to a host after getting the meterpreter session and others as well. 
Let's build a Custom Key logger with Cortana and understand its working with a 
Cortana script:

popup meterpreter_bottom {
menu "&My Key Logger" {
item "&Start Key Logger" {
m_cmd($1, "keyscan_start");
}
item "&Stop Key Logger" {
m_cmd($1, "keyscan_stop");
}
item "&Show Keylogs" {
m_cmd($1, "keyscan_dump");
}
on meterpreter_keyscan_start {
println(" $3 ");
}
on meterpreter_keyscan_stop {
println(" $3 ");
}
on meterpreter_keyscan_dump {
println(" $3 ");
}
}
}

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
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The preceding example shows the creation of a pop up in the Meterpreter submenu. 
However, this pop up will only be available if we are able to exploit the target host 
and get a meterpreter shell successfully.

The popup keyword will denote the creation of a pop up. The meterpreter_bottom 
function will denote that whenever a user right-clicks on an exploited host and 
chooses the Meterpreter option, Armitage will display this menu at the bottom. 
The item keyword specifies various items in the menu. The m_cmd command is the 
command that will actually send the meterpreter commands to Metasploit with their 
respective session IDs.

Therefore, in the preceding script, we have three items: Start Key Logger, Stop Key 
Logger, and Show Keylogs. They are used to start key logging, stop key logging, 
and display the data that is present in the logs, respectively. We have also declared 
three functions that will handle the output of the commands sent to the meterpreter. 
Let's now load this script into Cortana, exploit the host, and right-click on the 
compromised host which will present us with the following menu:

We can see that whenever we right-click on an exploited host and browse to the 
Meterpreter menu, we will see a new menu named My Key Logger listed at the 
bottom of all the menus. This menu will contain all the items that we declared in the 
script. Whenever we select an option from this menu, the corresponding command 
runs and displays its output on the Cortana console as follows:
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Whenever we select the first option, that is, Start Key Logger, we will be able to see 
the output in the Cortana console. Let's now wait for a short time to check whether 
the person working on the exploited host has typed in anything. After a short delay 
of a few seconds, let's now click on the third option, Show Keylogs, from the menu 
and analyze the output as follows:

After we click on the Show Keylogs option, we will see the characters typed by the 
person working on the compromised host in the Cortana console. This concludes our 
discussion on building menus using Cortana.
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Working with interfaces
Cortana also provides a flexible approach while working with interfaces. Cortana 
provides options and functions to create shortcuts, tables, switching tabs, and so on. 
Suppose, we may want to add a custom functionality such as whenever we press F1 
from the keyboard, Cortana should display the UID of the target host. Let's see an 
example of a script that will enable us to achieve this feature:

bind F1 {
local('$sid');
$sid ="1";
spawn(&gu, \$sid);  
} 
sub gu{  
m_cmd($sid,"getuid");
on meterpreter_getuid {
show_message( " $3 ");
}
}

The preceding script will add a shortcut key F1 that will display the UID of the 
target system when pressed. The bind keyword in the script denotes binding of 
functionality with the F1 key. Next, we define the scope of the $sid variable and 
assign a value of 1 to it (this is the value of the session ID with which we'll interact).

The spawn keyword will create a new instance of Cortana, execute the gu function, 
and pass the value of $sid as a global variable to the function as well. The gu function 
will send the getuid command to the meterpreter. The meterpreter_getuid 
command will handle the output of the getuid command.

The show_message command will pop up a message displaying the output from the 
getuid command. Let's now load the script into Armitage and see if it works correctly:
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Next, let's perform an intense scan over the target host and exploit it with the  
auto.cna script. Let's now press the F1 key from the keyboard to check and see if 
our current script executes well:

Bang! We got the UID of the target system easily which is NT AUTHORITY\
SYSTEM. This concludes our discussion on Cortana scripting using Armitage.

For further information about Cortana scripting and its various 
functions, refer to http://www.fastandeasyhacking.com/
download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
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Summary
In this chapter, we had a good look at Armitage and its various features. We kicked 
off by looking at the interface and building up workspaces. We also saw how we 
could exploit a host with Armitage. We looked at remote as well as client-side 
exploitation and post-exploitation. Further more, we jumped into Cortana and 
learned about its fundamentals, using it to control Metasploit. We created post-
exploitation scripts, custom menus, and interfaces as well.

Further reading
In this book, we have covered Metasploit and various other related subjects in a 
practical way. We covered exploit development, module development, porting 
exploits, client-side attacks, SET, Armitage, speeding up penetration testing, and 
testing services. We also had a look at the assembly language, Ruby programming, 
and Cortana scripting.

Once you have read this book, you may find the following resources useful in 
providing further details on these topics:

• For learning Ruby programming, refer to http://ruby-doc.com/docs/
ProgrammingRuby/

• For assembly programming, refer to https://courses.engr.illinois.
edu/ece390/books/artofasm/artofasm.html

• For exploit development, refer to http://www.corelan.be
• For Metasploit development, refer to http://dev.metasploit.com/

redmine/projects/framework/wiki/DeveloperGuide

• For SCADA-based exploitation, refer to http://www.scadahacker.com
• For in-depth attack documentation on Metasploit, refer to http://www.

offensive-security.com/metasploit-unleashed/Main_Page

• For more information on Cortana scripting, refer to http://www.
fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

• For Cortana script resources, refer to https://github.com/rsmudge/
cortana-scripts

http://ruby-doc.com/docs/ProgrammingRuby/
http://ruby-doc.com/docs/ProgrammingRuby/
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
http://www.corelan.be
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://www.scadahacker.com
http://www.offensive-security.com/metasploit-unleashed/Main_Page
http://www.offensive-security.com/metasploit-unleashed/Main_Page
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
https://github.com/rsmudge/cortana-scripts
https://github.com/rsmudge/cortana-scripts
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Process Identifies (PID)  205
Programmable Logic Controller (PLC)  158
Public Switched Telephone Network 

(PSTN)  176
Python-based exploit

launching  145
Python-based exploit, porting

essentials, gathering  142
existing exploit, dismantling  141, 142
performing  141
skeleton, generating  143
values, stuffing  143-145

R
RailGun

irb shell  84, 85
Ruby-interactive shell  84
scripting  85, 86
sophisticated scripts, fabricating  87-89
Window API calls, manipulating  86
working with  84

ranges, Ruby  55
RATTE module

about  286
using  289, 290

registers
about  92-94
EAX  94
EBP  94
EBX  94
ECX  94
EDX  94
EFLAGS  94
EIP  94
ESI/EDI  94
ESP  94
General Purpose  94

Index registers  94
Segment  94

regular expressions, Ruby  58, 59
Remote Administration tool (RAT)  

servers  267
Remote Administration Tool Tommy  

Edition. See  RATTE module
Remote Procedure Call (RPC)  34
Remote Terminal Unit (RTU)  158
report, penetration testing

creating  17
reports

generating  46
resource scripts  274
results, penetration testing

fetching, database used  43
storing, database used  43

Ruby
about  50
basics  60
decision-making operators  56
download link for Windows/Linux  50
interactive shell, working on  50, 51
loops  58
methods  56
methods, defining in shell  51, 52
numbers and conversions  54
program, creating  50
regular expressions  58
variable  52
variables' data types  52

S
SCADA

about  158
components  158
criticality  159
database exploitation  164
exploiting  159
fundamentals  158
fundamentals of testing  159, 160
securing  163
security, breaching  159
URL  162

SCADA-based exploits  160-162
SCADA exploitation
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passwords, brute forcing  167, 169
performing  164
scanning process, with Metasploit  

modules  167
server passwords, locating/capturing  170
SQL-based queries, running  174
SQL server  164
SQL server, browsing  170-172
SQL server, FootPrinting with  

Nmap  164-166
system commands, executing  172
system commands, post-exploiting  172
xp_cmdshell functionality, reloading  173

SCADApro system  161
SCADA security

about  163
implementing  163
networks, restricting  163

Secure Socket Layer (SSL) certificate  25
segment registers

CS  94
DS  94
ES  94
FS  94
GS  94
SS  94

SEH
about  124
bypassing  127
controlling  124, 126
fundamentals  124

SEH-based exploits
about  128
structure  129

self-hosted network, VOIP services  176
Server Message Block (SMB)  34
Session Initiation Protocol (SIP)  177
SET

about  266
attack techniques  268
attack types  266
attack vectors  266
features  291
fundamentals  266
web interface  291

SET attacks
automating  292, 293

ShellCode  34, 92
Short Messaging Service (SMS) servers  267
show_message command  342
SIP endpoint scanner  178
SIP service providers, VOIP  178
SMS Spoofing attack vector  267
social engineering  191, 265
Social Engineering Toolkit. See  SET
sophisticated scripts, RailGun

fabricating  87-89
Spear-Phishing attack vectors  266
split function, Ruby  53
squeeze function, Ruby  53
SS register  94
stack  92
stealth scan  40
strings, Ruby

working with  52, 53
Structured Exception Handling. See  SEH
Stuxnet bot  159
Supervisory Control and Data  

Acquisition. See  SCADA
SYN scan  223
system bus  93
system calls  92

T
tabnabbing attack

about  279
used, for harvesting credentials  280-283

target network, meterpreter scripting
pivoting  76-80

third-party attack vector  267-289
threat modeling, penetration testing

about  16
example  16

troubleshooting, WebSploit
file copy issue, fixing  312
path issues, fixing  311
payload generation, fixing  311
performing  311

U
Ultimate Packer for Executables (UPX)  277
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V
variables data types, Ruby

arrays  55
ranges  55

variables' data types, Ruby
about  52
split function  53
squeeze function  53
strings, working with  52

variables, Ruby  52
VirtualBox  19

downloading  19
VMware player  19
Voice Over Internet Protocol (VOIP)

about  175
exploiting  183, 184
fundamentals  175
PBX  175
vulnerability  184

VOIP call
spoofing  181, 182

VOIP services
FootPrinting  178, 179
hosted services  177
scanning  180
self-hosted network  176
SIP service providers  178
types  176

vsprintf() function  42
vulnerability analysis, penetration  

testing  17
vulnerability, VOIP exploitation  184

W
web-based exploits, porting

auxiliary-based exploit, fabricating  149
auxiliary-based exploit, working  150-153
essentials, gathering  147
existing exploit, dismantling  146
GET/POST method essentials  149
launching  154
performing  146
web functions, grasping  147-149

web interface, SET  291

web jacking attack
about  283
performing  283-285

Website attack vectors
about  267, 275
Java applet attack, executing  275-279
tabnabbing attack  279
web jacking attack, performing  283-285

website clients exploitation
malicious web scripts, injecting  245
performing  245
users, hacking  246, 247

WebSploit
about  309
commands  310, 311
troubleshooting  311
used, for attacking LAN  312-314

white box penetration test
access, gaining  204, 205
intelligence gathering  192
interaction, with employees  191
interaction, with end users  191
MagicTree  209
performing  189, 190
reporting services  211
suspected vulnerability prone systems, 

targeting  202, 203
threat areas, modeling  202
tracks, covering  205-208

white box testing  189
WHOIS

about  215
query, performing  216

Window API calls, RailGun
manipulating  86

Wireless Access Point Attack Vector  267
Word-based exploits

about  238
vulnerability, exploiting  239, 240

X
x86  92
XAMPP servers

compromising  243
PHP meterpreter  243, 244
system-level privileges, escalating  244
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